BHARATI VIDYAPEETH DEEMED UNIVERSITY COLLEGE OF ENGINEERING, PUNE COURSE STRUCTURE 2014 CBCS

B. Tech. Mechanical Sem.- VII

_			ching Sch tact Hrs./V			E	xaminatio	n Scheme	(Marks)			Total Credits		
Sr. No.	Course				End		Continu	ous Asses	sment					
110.		L	P/D	Т	Sem. Exam	Unit Test	Attend ance	Assign ments	TW/ OR	TW/ PR	Total	TH	TW	Total
1	Mechanical Vibration	3	2		60	20	10	10	50		150	3	1	4
2	Automatic Control System	3	2		60	20	10	10	50		150	3	1	4
3	Automobile Engineering	3			60	20	10	10			100	3		3
4	Industrial Fluid Power	3			60	20	10	10			100	3		3
5	Elective - II	3	-		60	20	10	10			100	3		3
6	Inplant Training	-							50		50		4	4
7	Project Stage -I		2						100		100		4	4
	Total	15	06	00	300	100	50	50	250		750	15	10	25

Elective-II Courses: a) Computational Fluid Dynamics; b) Industrial Engineering & Management; c) Nanotechnology; d) Production Planning & Control e) Experimental Methods in Mechanical Engineering

			ching Sch tact Hrs./\			E	xaminatio	n Scheme	(Marks))		Total Credi		its
Sr. No.	Course				End		Continuous Assessment							
110.		L	P/D	Т	Sem. Exam	Unit Test	Attend ance	Assign ments	TW/ OR	TW/ PR	Total	TH	TW	Total
8	Power Plant Engineering	4	2		60	20	10	10	50		150	4	1	5
9	Industrial Product Design	3	2		60	20	10	10	50		150	3	1	4
10	Optimum Design*	4	2		60	20	10	10	50		150	4	1	5
11	Elective-III	3			60	20	10	10			100	3		3
12	Project Stage –II	-	4						200		200		8	8
13	Environmental Sciences	3			100						100	3		3
	Total	14	10	00	240	80	40	40	350		750	14	11	25

B. Tech. Mechanical Sem.- VIII

* End Sem. examination of duration 4 hours

Elective – III Courses: a) Industrial Automation & Robotics; b) Cryogenics; c) Project Management & Ethics; d) Total Quality Management;

e) Finite Element Analysis

	 	1. MECHANICAL VIBRATION		
TEACHIN	G SCHEME:	EXAMINATION SCHEME: CI	REDITS AL	LOTTED:
Theory: 03	Hours / Week	End Semester Examination: 60 Th	neory: 03	
Practical: 02	Hours / Week	Marks Pr	actical: 01	
		Continuous Assessment: 40 Marks To	otal: 04	
		Term Work/ Oral: 50 Marks		
Course Pre-	requisites:			
1.	-	have knowledge of Fundamentals of Engine	eering Mecha	nics
2.		have knowledge of Engineering Mathematic	-	
3.		have knowledge of Machine Design and Co		l Drafting
4.		nave knowledge of Machine Design –I & II	-	C
5.		have knowledge of Theory of Machine		
Course Obj	ectives:			
1.	To study basic c	oncepts of vibration analysis		
2.	-	n the principles of vibration measuring instr	ruments	
3.		ing of mechanical systems		
Course Out	comes:			
Students wil	l be able to unders	stand		
1.	Develop mathe	matical model to represent dynamic system		
2.	Estimate natural	frequency of mechanical element/system		
3.	Analyze vibrato	ry response of mechanical element/system		
4.	Estimate the par	ameters of vibration isolation system		
UNIT - I	Basic Concept	s of Vibration		(06 Hours)
	Vibration and c	scillation, causes and effects of vibrations	s, Vibration	
	parameters -sp	ring, mass, damper, Damper models,	Motion -	
	periodic, non-pe	eriodic, harmonic, non- harmonic, Degree	of freedom,	
	static equilibriu	m position, Vibration classification, Steps	involved in	
	vibration analys	is.		
UNIT - II	Free Undamn	ed Single Degree of Freedom Vibrati	on System	(06 Hours)
	-	ransverse, torsion vibration system, M	•	(***)
	-	lifferential equations by Newton, Energy,		
	and Rayleigh's			
	2 1 Enco Dorrer	ad Single Degree of Freedom Vibration S	vetom	(06 U ours)
UNIT - III	_	ed Single Degree of Freedom Vibration S	-	(06 Hours)
	-	d system – under damped, critically dat ithmic decrement; Coulomb's damping;	-	
	uampeu; Logar	tunne decrement, Coulomb's damping;	Combined	

 viscous and coulomb's damping. 3.2 Equivalent Single Degree of Freedom Vibration System Conversion of multi-springs, multi masses, multi – dampers into a single spring and damper with linear or rotational co-ordinate system 	
 4.1 Forced Single Degree of Freedom Vibratory System Analysis of linear and torsional systems subjected to harmonic force excitation and harmonic motion excitation (excluding elastic damper) 4.2 Vibration Isolation and Transmissibility Force Transmissibility, Motion Transmissibility Typical isolators& Mounts 4.3 Rotor Dynamics: Critical speed of single rotor, undamped and damped	(06 Hours)
 5.1 Free Undamped Multi Degree of Freedom Vibration System Eigen values and Eigen vectors for linear system and torsional two degree of freedom; Holzer method for linear and torsional unbranched system; Two rotors, Three rotors and geared system; Dunkerley's and Rayleigh's method for transverse vibratory system 	(06 Hours)
Vibration Measurement -Introduction -Vibration measuring parameters- Displacement, Velocity and acceleration -Vibration measuring devices: Accelerometers, Vibration exciters, FFT analyzer, -Introduction to signal analysis: Time domain & Frequency domain analysis of signals. - Noise measurement	(06 Hours)
A Practicals: A ine the natural frequency of damped vibration of single degree freedom system of damping coefficient A frequency response curves of single degree freedom system of vibration for	
	 3.2 Equivalent Single Degree of Freedom Vibration System Conversion of multi-springs, multi masses, multi – dampers into a single spring and damper with linear or rotational co-ordinate system 4.1 Forced Single Degree of Freedom Vibratory System

7. To verify natural frequency of torsional vibration of two rotor system and position of node.

8. Noise measurement and analysis using vibration Analyzer

9. To determine natural frequency of vibration of beam using vibration analyzer.

10. Vibration analysis of mechanical system using MATLAB

Assignments:

1. Use and study MATLAB Code for fundamentals of vibration.

2. Use MATLAB program for vibration analysis with suitable example.

3. Longitudinal, transverse, torsion vibration system program in MATLAB.

4. MATLAB Program for Vibration calculations by Using of differential equations in MATLAB.

5. Study of Free Damped Single Degree of Freedom Vibration System.

6. Study of Equivalent Single Degree of Freedom Vibration System.

7. Study of Forced Single Degree of Freedom Vibratory System

8. Study of Vibration Isolation and Transmissibility

9. Finding of Eigen values and Eigen vectors for linear system and torsional two degree of freedom by MATLAB program.

10. Use FFT Analyzer for lathe machine vibration analysis

11. Study of Noise measurement

12. Theoretical study of vibration signal analysis.

,			
/Reference Books	5:		
Mechanical Vibr	rations - G. K. Grover Nem Chand & Bros.		
Mechanical Vibr	rations 4th edition- S. S. Rao - Pearson Education		
Fundamentals of	f Mechanical Vibration - S.Graham Kelly - <i>Tata McGraw Hill</i> 4.		
Vibration Analy	sis - P. Srineevasan - Tata McGraw Hill		
Mechanical Vibrations - Schaum's outline series - S.Graham Kelly- McGraw Hill			
Theory and Practice of mechanical vibrations - J. S. Rao, K. Gupta - New Age			
Mechanical Vibr	Mechanical Vibrations, J.P. Den Hartog, Mc Graw Hill Book Company Inc.		
Leonard Meirov	itch, Introduction to Dynamics and Conti'oJ. Wiley, New York		
Benson H. Tong	ue, Principles of Vibration. Oxford University Press.		
W. Thomson, Th	neory of Vibrations with Applications, Second Edition, Pearson		
Education			
Unit Test:			
	Unit I to III		
	Unit IV to VI		
	Reference Books Mechanical Vibi Mechanical Vibi Fundamentals of Vibration Analy Mechanical Vibi Theory and Prac Mechanical Vibi Leonard Meirov Benson H. Tong W. Thomson, Th		

	2.	AUTOMATIC CONTROL SYSTEM				
TEACHIN	G SCHEME:	EXAMINATION SCHEME: C	REDITS A	LLOTTED:		
	Hours / Week		heory: 03			
Practical: 02	2 Hours / Week	Continuous Assessment: 40 Marks Pr	ractical: 01			
		Term Work/ Oral: 50 Marks	Total	: 04		
Course Pre	-requisites ·					
	s should have					
<u>1.</u>		f Mathematics & Science				
2.	_	f Basic Electrical Engineering.				
3.	-	f Sensors and Measurement System.				
Course Obj	-	i sensors una measurement o'ystern.				
<u>1.</u>		on with Control System Principles and Application	ns of Control	System		
2.		Estimate the Stability Measures, Time Response		•		
		Iathematical Models of Some Simple Engineering				
3.	Develop Ladder Diagrams using PLC and Apply It for Industrial Automation.					
Course Out	-					
	ould be able to,					
1.		e (absolute) stability of a closed-loop control	ol system u	sing Routh-		
		bility criterion.	•	e		
2.	Obtain an over methods.	erall transfer function of control system by usin	g block diag	gram algebra		
3.		time response specifications of a control system.				
4.		d digital signal processing for mechatronics appli				
5.	-	entals of control systems, mechatronics system		improve an		
		m's performance by using controller action such a				
6.		er diagram and select PLCs for industrial applicat				
		Course Contents				
UNIT I	Frequency D	omain Modelling and Analysis		(06 Hrs)		
	Transfer Fund	ction based modeling of Mechanical, Thermal	and Fluid			
	System; Con	cept of Poles & Zeros; Absolute vs Relative	Stability;			
	Stability Anal	ysis using Routh Hurwitz Criterion; Mapping of	Pole Zero			
	Plot with Dan	nping Factor, Natural Frequency and Unit Step Ro	esponse.			
UNIT II	Block Diagra	m Algebra		(06 Hrs)		
	Block Diagr	am Fundamentals, Canonical Form, Rules f	for Block			
	Diagram Red	uction, Reduction of Block Diagram, Reducing	g to Unity			
	Feedback Sys	tems, Examples on Block Diagram Reduction.				
UNIT - III	System Resp	onse		(06 Hrs)		
	Introduction	of Time Response of Control System, Stand	dard Test			
	Signals, Inpu	tt-Output Model Equation, Instantaneous, Lag	gging and			
	Delay Respo	nse, Transient Specifications for Unit Step	Response,			

	Concept of State, State Variable, State Vector, State Space and State	
	Model.	
UNIT - IV	Signal Conditioning	(06 Hrs)
	Necessity of Signal Conditioning, Passive Circuits, Analog Signal	
	Processing: Operational Amplifiers, Inverting and Non-inverting,	
	Summing, Subtractor, Instrumentation. Digital Signal Processing:	
	Timing Diagrams, Sequential Logic, Flip-Flops, Successive	
	Approximation (SAR) type ADC and R-2R ladder DAC.	
UNIT V	Automatic Control System	(06 Hrs)
	Concept of Automatic Control Systems, Mechatronics System & Its	
	Examples, Mechatronics System Components, Open Loop and Closed	
	Loop System, Effects of Feedback and Basic Characteristic of Feedback	
	Control Systems. Applications of Feedback and Feed-Forward Control	
	System. Basic Control Action and Controllers:-On-Off Control,	
	Proportional, Integral, Derivative and PID.	
UNIT VI	Programmable Logic Controller	(06 Hrs)
	Introduction to PLCs, Basic Structure of a PLC, Principles of Operation,	
	PLC Programming Languages, Ladder diagram, Latching and internal	
	relays, Timers and Counters, Selection of a PLCs for Control System,	
	Application of PLCs for Automatic Control System. Concept of SCADA	
	and its Applications.	

Term Work:

Term work shall consist record of minimum 8 experiments from the following; Out of which Experiment no. 1, Experiment no. 3 and Experiment no. 9 are compulsory.

- 1. Analysis of following control system parameters using software like MATLAB/SIMULINK
 - a. Plot the pole-zero configuration in s-plane for the given transfer function
 - b. Stability analysis of given control system using Routh-Hurwitz's criterion
 - c. Determine the transfer function for given closed loop system in block diagram representation.
 - d. Plot unit step response of given transfer function and find peak overshoot, peak time, rise time and delay time.
- 2. Study of applications of Op-Amp Circuits.
- 3. Study of P, P+I, P+D, P+I+D control actions using any trainer kit / simulation software.
- 4. Study of XY position control systems.
- 5. Stabilizing Inverted Pendulum.
- 6. Study of A/D and D/A Converters.
- 7. Study the functions and applications of variable frequency drive(VFD).
- 8. To study AC servomotor and plot its Torque Speed characteristics.
- 9. Development of applications by using following instructions of the PLC
 - a. Latching
 - b. Timers

- c. Counters
- d. Logic Gates

10. Sequencing of pick and place robot using PLC programming.

11. Identification of different control system components in PLC based mini assembly cell.

12. Development of applications using SCADA system for any automation application.

Assignme	nts:
Assignme	nts will be based on above syllabus
	1. Numerical based on finding stability of control systems.
-	2. Explain the Transfer function based modeling of Mechanical System
Unit I	3. Explain the Transfer function based modeling of Thermal System
Ollit I	4. Explain the Transfer function based modeling of Fluid System
-	5. Explain concept of poles and zeros and its importance in stability analysis.
-	6. MATLAB based assignments on Routh-Hurwitz's stability criterion
Unit II	1. At least five questions on finding an overall transfer function of control system by
	using block diagram algebra method. 1. What is the meaning of system response?
-	 What is the meaning of system response? What do you understand by input-output model equation?
	 What do you understand by input-output model equation? Define instantaneous response, lagging response and delayed response.
Unit III	 4. Write notes on transient response specifications.
-	5. What types of test signals are usually considered for testing a system response.
-	6. Define state, state variable, state vector, state space and state model.
	1. Why signal conditioning elements are necessary? Explain. What are the
	applications of signal conditioning elements?
-	2. Define an op-amp. Explain with a neat block diagram. List the characteristics of an
-	ideal op-amp.3. Write short notes on Inverting and Non-Inverting amplifier.
Unit IV	 Write short notes on inverting and Non-inverting amplifier. Describe the significance of an instrumentation amplifier. Explain the operation of
	an instrumentation amplifier with the help of a circuit diagram.
-	5. Define terms timing diagram, sequential logic and flip-flop
-	 before terms timing diagram, sequential logic and hip-hop Describe the operations of J-K FF with truth table.
-	 Describe the operations of FR IT with tuble. Explain working of SAR type ADC
-	8. Explain working of R-2R ladder type DAC
	1. Define mechatronics and appreciate its relevance to contemporary engineering
	design
-	2. Identify five mechatronic systems and its primary elements
Unit V	3. Describe the various forms and elements of open-loop and closed-loop control
Unit v	system
-	4. Differentiate between feedback and feedforward control system
-	5. Explain working of control actions- P, PI, PD and PID
-	6. MATLAB based assignments on PID Controller
	1. Draw block diagram of PLC and explain working of each block in brief.
Unit VI	2. What is mean by ladder diagram? State difference between ladder and relay logic
-	3. With the help suitable example explain working of latch

	*	ng of timer and counter with ladder diagram.
		ia for selection of PLCs.
		er logics for industrial applications.
		ote on SCADA System & its use in automation
	8. Mini project ba	ased on PLC Programming.
	· · · · ·	
Text Boo	ks/Reference Books:	
1.	Control System Engine	eering: Nagrath L.T. and Gopal. M., Wiley Eastern Lid.
2.		"Introduction to Measurement and Mechatronics Systems",
	McGraw Hill.	
3.	W. Bolton, "Mechatro	nics", Pearson Education.
4.		shi, "Mechatronics", PHI
5.		ammable Logic Controllers", Cengage Learning.
6.		es, Concepts and Application: Mahalik, McGraw Hill Education Pvt
	Ltd;	
7.	Process Control Instru	mentation Technology, 8 th Edition Curtis D. Johnson, University of
	Houston	
8.	Ogata, Katsuhiko: "Me	odern Control Engineering (5 th Edition)", Prentice-Hall, Inc., 2009
	(ISBN: 0-13-615673-8	
9.	Madan Gopal, Control	Systems Principles and Design, Tata McGraw Hill, seventh
	edition, 1997.	
10.	Nise, Control System	Engineering, John Wiley & sons, 3 rd Edition.
11.	Norman Nise, "Contro	l System Engineering", Prentice Hall India, Fourth Edition.
12.		ol System Theory", Prentice Hall India.
13.	F. H. Raven, "Automa	tic Control Engineering", Third edition, McGraw Hill, 1983.
14.		natic Control Systems Engineering", Dhanpat Rai Publishing
	Company.	
Syllabus	for Unit Test:	
Unit Test	-1	Unit I to III
Unit Test	-2	Unit IV to VI

	3.	. AUTOMOBILE ENGINEERIN	G			
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:			
Theory: 0	3 Hours / Week	End Semester Examination: 60 Marks	TH: 03 Credits			
		Continuous Assessment: 40 Marks	Total: 03 Credits			
		Term Work/ Oral: Marks				
Course Pro	e-requisites:					
	ts should have bas	ic knowledge of				
1.	The Students s	hould have basic knowledge of Elements o	f Mechanical engineering			
2.	The Students should have basic knowledge of Machine Tools					
3.	The Students should have basic knowledge of Internal Combustion Engine					
4.	The Students sh	ould have basic knowledge of Theory of M	Aachine			
Course Ob	jectives:					
	1. Study basic p	principles of actual automobile systems				
	2. Study import	ant systems in an automobile				
		and modern trends in automobile sector				
Course Ou	itcomes:					
Students w	ill be able to under	rstand				
1.	various system	s in an automobile				
2.	Importance and	l features of different systems like steering	axle, differential.			
3.	Importance and	features of different systems like Transmi	ssion, braking System			
4.	Importance and	features tyres, wheel and balancing etc.				
5.	Importance of e	lectrical, starting and generating system et	с.			
6.	Principle of ope automobile	eration, construction and applications of va	rious sensors used in modern			
UNIT - I	Broad classifi functions, Ty	of Automobiles cation of Automobiles, Major compone pes of vehicle layouts, Types of bo to materials, All wheel drive, Types of cha	odies, Body			

UNIT - II	 Steering System Function of steering, Steering system layout, Automotive steering mechanism Ackerman & Davis, Types of steering gear boxes, Condition for true rolling, Steering geometry Camber, Caster, King pin inclination, included angle, Toe-in & Toe-out, Wheel alignment, Under steer & Over steer, Types & working of power steering. Transmissions: Necessity of gear box, Sliding mesh, Constant mesh, Synchromesh and epicyclic gear box, Overdrives and hydrodynamic torque converter, Trouble shooting and remedies. Live axle and differential: Final drive, spiral, bevel, Hypoid and worm drives, Types of live axles, semi, three quarter and full floating axles. Necessity of differential, Conventional and non-slip differential, Trouble shooting and remedies. 	(06 Hours)
UNIT - III	Clutch Braking System Requirement of clutch, Types & functions, Single plate, Multiplate, Centrifugal, Cone clutch, Electromagnetic & Fluid clutches, Troubleshooting & automobile clutch. Braking System Function of automotive brake system, Types of braking mechanism Internal, Expanding & Disc brake, Mechanical, Hydraulic & Air brake system, Servo & power brakes, Antiskid braking, Calculation of braking force required, Stopping distance & dynamic weight transfer.	(06 Hours)
UNIT - IV	SuspensionObject of suspension, Basic requirement, Air suspension and its features, Independent suspension, Spring & unspring mass, Types of spring, Shock absorber, Torsion bars, Air suspension, Hydro pneumatic suspension, Pitching, rolling and bouncing.Wheels and Tyres Requirements of wheels and tyres, Constructional features, Types of tyres, Types of rim , Inflation Pressure and its importance, Application to ride and stability, Trouble shooting and remedies.	(06 Hours)
UNIT - V	 Electrical system Battery: Types of battery, Lead-Acid, Alkaline, ZEBRA, Sodium Sulphur and Swing, Ratings, charging, Maintenance and testing of Lead-Acid battery. Starting system: Requirements, Various torque terms used, Starter motor drives; Bendix, Follo through, Barrel, Rubber compression, Compression Spring, Friction Clutch, Overrunning Clutch, Dyer. 	(06 Hours)

	Starter motor solenoids and switches, Glow plugs.					
	Alternator: Principle of operation, Construction, Working, Rectification from AC to DC.					
	Recurrention from AC to DC.					
UNIT -	Electronic Control module (ECM), operating modes of ECM (closed loop and open loop) Inputs required and output signals					
	from ECM, Electronic Spark control, Air Management system, Idle speed control. Construction, working & application of					
	temperature sensors, inductive sensors, Position sensors (rotary,					
	linear). Hot wire and thin film air flow sensors, vortex					
	flow/turbine fluid sensors, Optical sensor, Oxygen sensors,					
	Light sensors, methanol sensors ,Rain sensor, New					
	developments in the sensor technology.					
Any Six	Assignments from the following:					
I. Study	of types of bodies and chassis of automobile.					
	t on dismantling and assembly of steering mechanisms.					
	t on dismantling and assembly of brakes.					
	t on dismantling and assembly of rear axle and differential.					
	t on dismantling and assembly of suspension systems.					
-	of types of tyres and rims.					
	t on battery charging and starting systems.					
•	and understanding of different types of sensors used in automobile.					
	t on industrial visit to any automobile Manufacturer.					
10. Rep	ort on industrial visit to any Two wheeler/ Four Wheeler service station					
Text B	ooks/Reference Books:					
	Automotive Mechanics, William Cruose & Donald L. Anglin, Tata Mcgraw H	ill				
1						
1 2	Automotive Mechanics, Joseph Heitner, East-West press pvt .Ltd					
2	Automotive Mechanics , Joseph Heitner, East-West press pvt .Ltd The Automobile Engineering, T. R. Banga & Nathu Singh, Khanna Publishers The Automobile, Harbans Singh Reyat, S. Chand & Co.	3				
2 3	The Automobile Engineering, T. R. Banga & Nathu Singh, Khanna Publishers	<u>.</u>				
2 3 4	The Automobile Engineering, T. R. Banga & Nathu Singh, Khanna Publishers The Automobile, Harbans Singh Reyat, S. Chand & Co.					
2 3 4 5	The Automobile Engineering, T. R. Banga & Nathu Singh, Khanna Publishers The Automobile, Harbans Singh Reyat, S. Chand & Co. Automobile Engineering, R. K. Rajput, Laxmi Publication					
2 3 4 5 6	The Automobile Engineering, T. R. Banga & Nathu Singh, Khanna Publishers The Automobile, Harbans Singh Reyat, S. Chand & Co. Automobile Engineering, R. K. Rajput, Laxmi Publication Basic Automobile Engineering, C.P.Nakra, Dhanpat Rai Publishing CO					

10	Automobile Engineering, Vol I & II, R.K. Mohanty, Standard Book House	
Syllabu	is for Unit Test:	
Unit Te	est -1	Unit I to III
Unit Te	est -2	Unit IV to VI

4. INDUSTRIAL FLUID POWER		
Teaching Scheme:	Examination Scheme:	Credits Allotted
	End Semester Examination: 60 Marks	Theory: 03
Theory: -03Hours/ Week	Continuous Assessment: 40 Marks	Total :03
	Term Work/ Oral: Marks	

Course	The Students should have	
Prerequisites:	1. Knowledge of fluid mechanics, turbomachinery.	
-	2. Knowledge of mechanical measurement.	
	3. Knowledge of Theory of Machine	
Course Objective: -	 Familiarization with fluid power principles and the fluid power industry. To analyse specific problems, design solutions and evaluate fluid power systems in industrial applications. To instil within students a positive safety attitude with regard to the design, construction, operation, and maintenance of fluid power systems. To provide students with knowledge of the applications of fluid power systems in process, construction, robotics and manufacturing industries. To develop within each student a measurable degree of competence in the design, construction, operation and maintenance of fluid power systems. To provide students with an understanding of the properties of hydraulic and pneumatic fluids, as well as components utilized in industrial fluid 	
Course Outcomes: -	 and pneumatic fluids, as well as components utilized in industrial fluid power systems. Students should be able to Identify fluid power system and its basic components for practical applications. Select suitable pump, reservoir and accumulators for various industrial applications. Use specific pressure, flow and direction control valves based on applications. Select actuator and develop a simple hydraulic circuit to accomplish the task. Understand basic components of the pneumatic& electro-pneumatic systems and develop pneumatic circuit for industrial automation. Design hydraulic & pneumatic circuit for industrial applications. 	

Course Contents

Unit 1 Introduction to Fluid Power	(06Hrs)			
Fluid power system: Components of fluid power system, advantages and limitations.	,			
between electrical, pneumatic and fluid power systems. Applications in the fields of machine				
tools, material handling, aerospace, mobile and stationary machines, clamping devices and more				
applications of fluid power.				
Types of hydraulic fluids, Seals, Conductors: Petroleum based, synthetic and w	vater based.			
Properties of fluids, Pascal's Law, selection of fluids, additives, effect of temp	erature and			
pressure on hydraulic fluid. Seals, sealing materials. Types of pipes, hoses, mat	erial. Fluid			
conditioning through filters, strainers, sources of contamination and contamination co	ntrol.			
Unit 2 Source of Power	(06 Hrs)			
Pumps: Types, classification, principle of working and constructional details of g	gear pumps,			
vane pump, piston pump, power and efficiency calculations, characteristics curves,	selection of			
pumps for hydraulic power transmission (Numerical Treatment).				
Power units and accessories: Types of power units, reservoir assembly, sizing of				
constructional details, pressure switches, temperature switches. Accumulators: Type				
procedure, applications of accumulators. ISO symbols for hydraulic and	pneumatic			
Components	T			
Unit 3 Fluid Power Control	(06 Hrs)			
Control of fluid power: Necessity of fluid control through pressure control, direction	onal control			
and flow control valves.				
Control valves: i) Principle of pressure control valves, direct operated and pile	-			
pressure relief valves, pressure reducing valve, sequence valve. ii) Principle of fl				
valves, pressure compensated and non-compensated flow control valves.iii) P	-			
directional control valves, types of directional control valves, two-way, three-way	•			
valves, check valve and shuttle valve. Open centre, close centre, tandem centre valves	-			
devices- manually operated, mechanically operated, solenoid operated, pilot operated	rated, lever			
operated. Unit 4 Actuators and Industrial Circuits	(06 Hrs)			
Actuators: (i) Linear and Rotary actuators (ii) Types of cylinders and mountin				
considerations for cylinders (iii) Types of hydraulic motors- gear, vane & piston. (iv)				
control of acceleration, deceleration. (v) Calculation of piston velocity, thrust unde				
dynamic applications, considering friction, inertia loads (Numerical Treatment).	i stutie und			
Industrial circuits : Simple reciprocating, Regenerative, Speed control (Meter in, n	neter out &			
bleed off), Sequencing, Synchronization, transverse & feed, automatic reciprocatin				
circuit, counter balance circuit, actuator locking, circuit for hydraulic press, unload	-			
motor breaking circuit.	8			
Unit 5 Pneumatics	(06 Hrs)			
Principle of Pneumatics: (i) Laws of compression, types of compressors, s	election of			
compressors. Pneumatic actuators-rotary, reciprocating (ii) Comparison of pneur				
hydraulic power transmissions. (iii) Types of filters, regulators, lubricators, mufflers, dryers.				
	•			
(iv) Pressure regulating valves, (v) Direction control valves (vi) Speed regulating	ig methods			

used in Pneumatics.(vii)Basic pneumatic circuits (viii) Introduction to electro-pneumatics. Application of pneumatics in industrial automation.

Introduction to vacuum: Vacuum measurement, vacuum pumps, introduction to vacuum sensors and valves. Industrial applications of vacuum.

Unit 6 System Design

(06 Hrs)

Design of hydraulic/ pneumatic circuit for practical application, Selection of different components such as reservoir, various valves, actuators, filters, pumps based on design. (Students are advised to refer manufacturer's catalogues.)

Term work

Term work shall consist record of minimum 10 experiments from following; Out of which Experiment no.7, Experiment no. 9 and Experiment no. 13 are compulsory.

- 1. Study of ISO/JIC Symbols for hydraulic and pneumatic systems.
- 2. Study of positive displacement pumps and determination of performance characteristics.
- 3. Study of filters and determination of filtration ratings.
- 4. Study of pressure control valves and circuits.
- 5. Study of flow control valves (Meter in, Meter out Circuits).
- 6. Study of direction control valves and circuits.
- 7. Following experiments to be done on pneumatic trainer:
 - a) Automatic reciprocating circuit.
 - b) Speed control circuit.
 - c) Pneumatic circuit involving shuttle valve/quick exhaust valve.
 - d) Sequencing circuit.
 - e) Circuits by using logic gates.
- 8. Following experiments to be done on hydraulic trainer:
 - a) Regenerative circuit.
 - b) Speed control circuit.
 - c) Sequencing circuit.
 - e) Transverse and feed circuit.
- 9. Design of circuits by using fluid simulation software's such as LVSIM®-HYD & PNEU, AUTOMATION STUDIO.
- 10. Study of Logic for DELAY Circuit using signal Input device unit & Indicator unit.
- 11. Design of compressed air distribution in pneumatic systems.
- 12. Design of simple hydraulic systems used in practice such as hydraulic clamp, jacks, dumper, forklift etc.
- 13. Industrial visits for applications of hydraulic and pneumatic system and their reports.
- 14. Study of accumulators/actuators/intensifiers/hydraulic and pneumatic power brakes.

Assignments

Assignments will be based on above syllabus

- 1. Theory questions based on hydraulic fluids, seal, strainer, conductor and filters.
- 2. At least five numerical/theory questions on sources of power.
- 3. Theory questions based on selection of pressure control, flow control and directional control valve for specific application.
- 4. Develop at least five hydraulic circuits using simulation software like Automation Studio.
- 5. Develop at least five pneumatic circuits for low cost industrial automation using simulation software like Automation Studio, Fluid SIM®.
- 6. Design of at least five hydraulic/pneumatic systems which includes components such as reservoir, various valves, actuators, filters, pumps based on design.
- 7. Theory questions based on sources of contamination, and its control.
- 8. Theory questions based on fluid power control.
- 9. Theory questions based on pneumatics and its applications
- 10. Identify at least five fluid power applications and enlist the fluid power components used in each of these applications.
- 11. Design of hydraulic/pneumatic circuit for practical application and selection of fluid power components.

Text Books

- 1. Anthony Esposito, Fluid Power with Applications, Pearson.
- 2. S.R. Majumdar, Oil Hydraulic systems- Principle and maintenance, Tata McGraw Hill.
- 3. S. R. Majumdar, Pneumatics Systems Principles and Maintenance, Tata McGraw Hill.
- 4. H. L. Stewart, Hydraulics and Pneumatics, Taraporewala Publication.
- 5. Jagadeesha T. and Tahammaiah Gowda, Fluid Power, Generation, Transmission and Control Wiley Publication.

Reference Books

- 1. J. J. Pipenger "Industrial Hydraulics", McGraw Hill
- 2. Pinches "Industrial Fluid Power", Prentice hall.
- 3. D.A. Pease "Basic Fluid Power'', Prentice hall.
- 4. B. Lall "Oil Hydraulics", International Literature Association.
- 5. Yeaple "Fluid Power Design Handbook".
- 6. ISO 1219, Fluid Systems and components, Graphic Symbols
- 7. Andrew A. Parr, Hydraulics and Pneumatics, Elsevier Science and Technology Books
- 8. Product Manuals and books from Vickers/ Eaton, FESTO, SMC pneumatics
- 9. Dr. R K Bansal, Fluid Mechanics, Laxmi Publications (P) Ltd.

Unit Tests-

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

	Elective II: 5	.1 COMPUTATIONAL FLUID D	YNAMICS	
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 03 Hours / Week		End Semester Examination: 60 Marks	TH:03 Credits	
Practical: -]	Hours / Week	Continuous Assessment: 40 Marks	Total:03 Credi	ts
		Term Work/ Oral: Marks		
Course Pre	-requisites:			
The Student	ts should have			
1.	Knowledge of	Mathematics & Science		
2.	Knowledge of	fluid mechanics and heat transfer		
Course Ob	jectives:			
1.	To introduce Governing Equations of vicious fluid flows			
2.	To introduce numerical modeling and its role in the field of fluid flow and heat transfer			
3.	To enable the s	tudents to understand the various discreti	zation methods	
Course Ou	tcomes:			
Students wi	ll be able to unde	erstand		
1.	Student should able to understand types of flow			
2.	Student should able to understand CFD Analysis			
3.	Student should able to understand numerical methods used in CFD			
4.	Student should able to understand Generate mesh			
5.	Student should	Student should able to understand conjugate heat transfer		
6.	Student should able to understand turbulence modeling			
	1	Course Contents		
UNIT - I	Introduction (o fluid Dynamics		(06 Hrs)
	transport theor	Fluid Flow, Pressure distribution in flue em, Integral form of conservation equation rvation equations, Different Types of Flue	ons, Differential	

	Flow characteristics over various bodies.	
UNIT - II	Mesh Generation	(06 Hrs)
	Surface mesh generation Surface mesh repair, Volume grid generation,	
	Volume mesh improvement, mesh smoothing algorithms, grid	
	clustering and quality checks for volume mesh. Adaptive, Moving and	
	Hybrid Grids, Need for adaptive and, moving grids, Tet, pyramid,	
	prism, and hex grids, using various elements in combination	
UNIT - III	Basic Discretization Techniques	(06 Hrs)
	Need to discretization the domain and governing equations, Finite	
	difference approximation using Taylor series, for first order (Forward	
	Difference Approximation, Backward Difference Approximation,	
	Central difference Approximation) and second order (based on 3 node,	
	4 node and 5 node points), explicit and Implicit approaches applied to	
	1D transient conduction equation, Couette flow equation using FTCS	
	and Crank Nicholson's Method, Stability Criteria concept and physical	
	interpretation, Thomas Tri-diagonal matrix solver.	
UNIT - IV	Two Dimensional Steady and unsteady heat conduction	(06 Hrs)
	Solution of two dimensional steady and unsteady heat conduction	
	equation with Dirichlet, Neumann, robbins and mixed boundary	
	condition – solution by Explicit and Alternating Direction Implicit	
	method (ADI Method), Approach for irregular boundary for 2D heat	
	conduction problems	
UNIT - V	Application of Numerical Methods to Convection – Diffusion	
	System	(06 Hrs)
		(06 Hrs)
	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and	(06 Hrs)
	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady	(06 Hrs)
	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet	(06 Hrs)
	System Convection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient	(06 Hrs)
	System Convection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion system	(06 Hrs)
UNIT - VI	System Convection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient	(06 Hrs) (06 Hrs)
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties,	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initialising and solution control for the solver, Residuals,	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax- Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initialising and solution control for the solver, Residuals, analysing the plots of various parameters (Scalar and Vector contours	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initialising and solution control for the solver, Residuals, analysing the plots of various parameters (Scalar and Vector contours such as streamlines, velocity vector plots and animation). Introduction	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initialising and solution control for the solver, Residuals, analysing the plots of various parameters (Scalar and Vector contours such as streamlines, velocity vector plots and animation). Introduction to turbulence models. Reynolds Averaged Navier-Stokes equations	
UNIT - VI	SystemConvection: first order wave equation solution with upwind, Lax– Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion systemCFD as Practical ApproachIntroduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initialising and solution control for the solver, Residuals, analysing the plots of various parameters (Scalar and Vector contours such as streamlines, velocity vector plots and animation). Introduction	

Assignment	s will be based on	above syllabus
1.	Reynolds transp	ort theorem, Integral form of conservation equations
2.		m of conservation equations, Different Types of Flows, Euler and
3.	-	generation Surface mesh repair, Volume grid generation, Volume ent, mesh smoothing algorithms
4.	Grid clustering and quality checks for volume mesh. Adaptive, Moving and Hybrid Grids	
5.	•	e approximation using Taylor series, for first order
6.	Explicit and Implicit approaches applied to 1D transient conduction equation, Couette flow equation using FTCS and Crank Nicholson's Method	
7.	Solution of two dimensional steady and unsteady heat conduction equation with Dirichlet, Neumann,	
8.	Robbins and mixed boundary condition – solution by Explicit and Alternating Direction Implicit method (ADI Method), Approach for irregular boundary for 2D heat conduction problems	
9.	Convection: first order wave equation solution with upwind, Lax–Wendroff, Mac Cormack scheme, Stability Criteria concept	
10.	Selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness	
Text Books	/Reference Book	
1.	-	and Malalasekera, W., An Introduction to Computational Fluid finite volume Method, Longman, 1998.
2.	Ghoshdastidar , P.S., computer Simulation of flow and heat transfer, Tata McGraw Hill Publishing Company Ltd., 1998.	
3.	Patankar, S.V. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 2004.	
4.	Muralidhar, K., and Sundararajan, T., Computational Fluid Flow and Heat Transfer, Narosa Publishing House, NewDelhi, 1995.	
5.	Prodip Niyogi, Chakrabarty .S.K., Laha .M.K. Introduction to Computational Fluid Dynamics, Pearson Education, 2005	
		o Computational Fluid Dynamics Anil W. Date Cambridge s, 2005.
Syllabus for	r Unit Test:	
Unit Test -1		Unit I to III
Unit Test -2		Unit IV to VI

Ele	ctive II: 5.2 I	NDUSTRIAL ENGINEERING & MANAGEM	ENT
TEACHING SCHEME:		EXAMINATION SCHEME: CREDITS A	LLOTTED:
Theory: 03 Hours / Week		End Semester Examination: 60 Marks TH:03 Credit	S
Tutorial: 00 Hours / Week		Continuous Assessment: 40 Marks Total: 03 Cre	dits
		Term Work/ Oral: Marks	
Course Pre	e-requisites:		
	ts should have		
1.	Knowledge of	f basic concept of Management	
2.	Basic informa	tion of Industrial engineering.	
3.		dge of human considerations in manufacturing.	
Course Ob	jectives:		
	The student sl	hould understand the scope, objective and application of in	dustrial
	engineering tools and management practices in manufacturing.		
Course Ou	tcomes:		
Students wi	ll be able to und	erstand	
1.	Definition, principles and functions of management.		
2.	Types and selection of business organizations.		
3.	Functioning of Personnel, Marketing and Finance Department.		
4.	Method Study tool for standardizing the method.		
5.	Work Measurement tool for standardizing the time.		
6.	Ergonomicall	y accepts in manufacturing.	
UNIT - I	Management	-An Introduction:	(06 Hours)
	Management-	Meaning and Definitions, Management, Administration,	
	-	tion concepts, Management as an Art and Science and a	
		ontribution of various thinkers to management thought,	
		Functions of Management. Different approaches to	
	management -	- scientific, operational, human and system approach.	
UNIT - II	Partnership,	n: ns of business Organization –Individual proprietorship, Joint stock company, Co-Operative enterprise, Public rtakings, organizational structures in Industries, Line,	(06 Hours)

	Functional ,Line and functional , Project, Matrix Organization and Committees	
UNIT - III	Financial, Marketing and Personnel Management: Personnel Management-Definitions Recruitment, Selection and training of the employees, Job valuation and Merit rating, wage administration different methods of wage payments, incentives. Marketing Management-Definitions, Marketing and Selling concept, market segmentation, distribution channels, Market Research, Advertising and sales promotion and Sales forecasting. Financial Management-Capital structure, Fixed capital, working capital, sources of finance, cost analysis, Break even analysis, Depreciation and Financial statement.	(06 Hours)
UNIT - IV	Method Study: Steps in method study, tools and techniques used, process chart symbols, flow diagrams, two handed chart, multiple activity chart, use of motion pictures and its analysis. SIMO charts, chorno & cycle graph, developing, presentation, installation and maintenance of improved methods.	(06 Hours)
UNIT - V	 Work Measurement : Time Study: Aim and objectives , terminology and tools, use of stop watch procedure in making a time study, elements, selection of operations time study forms, handling of foreign elements. Performance rating. Allowances: Personal, Fatigue and other allowances. Analysis and calculation of Standard Time. Determination of number of cycles time study for indirect functions such as Maintenance , Marketing etc., MOST Technique. Works Sampling: Definition, Objectives, theory of Work Sampling. Other applications of work sampling, errors in work sampling study. Synthetic and Standard data Methods: Concepts, introduction to PMTS, MTM-1, WF, Basic motion time, MTM-2, and other second – generation methods timing of group operations. 	(06 Hours)
UNIT - VI	Ergonomics and Industrial Safety: Definitions, importance in industry, basic anatomy of human body, anthropometrics, measurement of physical work and its techniques, work and rest cycles, bio mechanical factors environment effects. Importance of safety, planning, training, safety precautions, safety	(06 Hours)

	Equipments, Government regulations on safety.				
Assignments					
-	Assignments:				
	1. Management: Types, Functions, Principles 2. Starlage formulation Structure				
	v of organization Structure				
	v of Business organizations				
	v of Financial, Marketing and Management				
	v of Personnel Management				
	v of Method Study methods and procedure				
	/ of Method Study charts				
	v of Work Measurement methods and procedure				
-	of Time study procedure and problems				
-	of Work sampling and problems				
-	v of Ergonomics				
	v of Industrial Safety				
Text Books					
1.	O. P. Khanna, Industrial Engineering & Management, Dhanapat Rai & Sons.				
2.	M. C. Shukla, Business Organization and Management, S. Chand & Co. Ltd, New				
	Delhi.				
3.	Harold Koontz & Heinz Enrich, Essentials of Management, McGraw Hill				
	International.				
4.	M. N. Mishra, Organizational Behavior, Vikas publishing New Delhi.				
5.	Dale Yoder, Personnel Management.				
6.	Work Study, ILO.				
7.	S. S. Patil, Industrial Engineering & Management, Electro tech Publication.				
8.	Mansoor Ali & Dalela, Industrial Engineering & Management System, Standard				
	Publisher distributions.				
9.	R. M. Currie, Work Study, ELBS.				
10.	Management by James A. F. Stoner, R. Edward Freeman, PHI				
11.	Management Today: Principles and Practice by Gene Burton and Manab Thakur, TMH				
12.	Organizational Behavior by Keith Davis, TMH				
13.	Management (Tasks, responsibilities and Practices) by Peter Drucker, Harper				
	Business				
14.	Production Management by Lockyer, ELBS				
15.	Modern Production Management by E. S. Buffa (John Wiley)				
16.	Financial Management by Vanhorne, PHI				
17.	Financial Management (Theory and Practice) by Prasanna Chandra, TMH				
18.	Marketing Management by Philip Kotler, Pearson Edition				
10.					

19.	Marketing Management by Rajan Saxena, TMH		
20.	Personnel Management by Edward Flippo, TMH		
21.	Industrial Engineering and PPC" by A.K Bewwor and V.A.Kulkarni.		
	· ·		
Syllabus for	Syllabus for Unit Test:		
Unit Test -1		Unit I ,II and III	
Unit Test -2		Unit IV,V and VI	

	ELEC	CTIVE II: 5.3 NANOTECHNOLO	GY	
TEACHING SCHEME: EX		EXAMINATION SCHEME:	CREDITS ALLOTTE	D:
Theory: 03 Hours / Week		End Semester Examination: 60 Marks	TH: 03 Cred	lits
Practical: 0	0 Hours / Week	Continuous Assessment: 40 Marks	Total: 03 Cr	redits
		Term Work/ Oral: Marks		
Course Pro	e-requisites:			
The Studen	ts should have			
1.	Material Scien	ce		
2.	Physical prope	rties of Material		
3.	Chemical prop	erties of Material		
Course Ob	jectives:			
	To know the history, synthesis, characterization and application of Nanotechnology			
Course Ou	tcomes:			
Students wi	ill be able to unde	erstand		
1.	The basic of n	ano science and nanotechnology		
2.	Properties of nanomaterials			
3.	Synthesis process of the nanomaterials			
4.	Characterization tools of nanomaterial			
5.	Applications of nano science e and nanotechnology			
6.	Safety parameters while implementing nanotechnology			
UNIT - I	Basics of Nan	oscience		(06 Hours)
	nanoscience an inorganic nano	length scale of different structures, de nd nanotechnology, fullerenes, CNTs, gra ostructures, the evolution of Nanoscienc onic structure of various nanophase materia	phenes and e, quantum	
UNIT - II	T - II Properties of Nano materials (06 Hours		(06 Hours)	

	Mechanical, Thermal, Electrical, Optical, Magnetic and Structural properties. Carbon nanostructures -Fabrication, structure, electrical	
	properties and mechanical properties	
UNIT - III	Synthesis of Nonmaterial's	(06 Hours)
	Bottom up-Ball Milling, Melt mixing, Physical vapour deposition, Ionized cluster beam deposition, Laser pyrolysis, Sputter deposition, Electric arc deposition, Gas evaporation. Chemical methods: Hydrothermal combustion, bath deposition with capping techniques and top down, Chemical vapour deposition, Synthesis of metal & semiconductor nanoparticles by colloidal route, Microemulsions, Sol-gel method, Combustion method, Wet chemical method	
UNIT - IV	Nanomaterials characterization	(06 Hours)
	Nanomaterials characterization XRD, UV-VIS spectroscopy, X-ray fluorence, X-ray photon emission spectroscopy, Scanning electon microscopy, Transmision electron microscophy, Scanning tunneling microscopy, Atomic force microscopy, Nuclear magnetic resonance spectroscopy, Electron spin resonance spectroscopy, Raman spectroscopy	
UNIT - V	Applications of Nanotechnology	(06 Hours)
	Industrial applications of nanomaterials, in the areas of electronics, photonics, biology, nano biomaterials, health and environment, medicine, defence, chemicals, catalysts, textiles, etc. Application of nanotechnology in remediation of pollution, photocatalysis and other nanocatalysts, greenhouse gases, global warming. Monitoring nanoparticles at work place and sensors used for this.	
UNIT - VI	Nanotechnology and Safety	(06 Hours)
	Assessment of human health risks associated with the use of nanotechnologies and nanomaterials in the food and agriculture sectors, safety, current risk assessment approaches used by FAO/WHO, environmental, ethical, policy and regulatory issues. Toxicity of nanoparticles, exposure to nanoparticles and CNTs and influence on respiratory systems.	
Term Work	/Practical's:	
	y of nanoscienece and nanotechnology structures	
-	nesis of nanofibers by electrospinning processes	
3. Synth	nesis of nonmaterial's by sol gel process	

- 4. Study of Atomic Force Microscope
- 5. Study of nano particle analyzer
- 6. Study of Electrospinning Process
- 7. Study of FTIR

Assignments:

- 1. Study of nano science and nanotechnology structures
- 2. Properties :Mechanical, Thermal, Electrical, Optical, Magnetic and Structural

3. Properties: Carbon nanostructures

4. Synthesis of Nonmaterial's: Bottom up

5. Synthesis of Nonmaterial's: Chemical methods

6. Surface electon microscopy, Transmision electron microscophy, Scanning tunneling microscopy

7. UV-VIS spectroscopy, X-ray fluorence, Atomic force Microscope, Raman spectroscopy

8. Applications in electronics, photonics, biology, health and environment, medicine, defence, chemicals, catalysts, textiles

9. Application of nanotechnology in remediation of pollution, photocatalysis and other nanocatalysts, greenhouse gases, global warming

10. Nanotechnology and Safety

Text Books	/Reference Books:
1	Edward L. Wolf (2nd Ed.), Nanophysics & Nanotechnology: An Introduction to Modern Concepts in Nanoscience, WILEYVCH, 2006
2	H.S.Nalwa, Hand book of Nanostructure materials and nanotechnology; (Vol.1- 5), Acad. Press, Boston, 2000
3	C.P.Poole Jr., F.J.Owens; Introduction to Nanotechnology, John Wiley and sons, 2003
4	C. Furetta, Hand book of thermoluminescence; World Scientific Publ.
5	5.T.J.Deming, Nanotechnology; Springer Verrlag, Berlin, 1999
6	C. Delerue, M.Lannoo; Nanostructures theory and Modelling
7	Fausto, Fiorillo, Measurement and Characterization of Magnetic materials
8	Janos H, Fendler; Nanoparticles and Nanostructured Films

9	Liu,Hand Book of Advanced Magnetic Materials (4 Vol.)		
10	Banwong, Anura	g Mittal; Nano CMOS Circuit and Physical Design	
11	S. Sakka,Sol-gel science and technology processing, characterization and applications; Kluwer Acad. Publ.		
12	Goser et al, "Nanoelectronics & Nanosystems: From Transistor to Molecular & Quantum Devices"		
13	A. A. Balandin and K. L. Wang, "Handbook of Semiconductor Nanostructures & Nanodevices"		
14	Cao Guozhong, "Nanostructures & Nanomaterials -Synthesis, Properties & Application		
Syllabus for Unit Test:			
Unit Test -1	Unit Test -1 Unit I to III		
Unit Test -2	Test -2 Unit IV to VI		

ŀ	Elective II: 5.4	4 PRODUCTION PLANING AN	D CONTROL	
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 03 Hours / Week		End Semester Examination: 60 Marks	TH: 03 Credits	
Practical: - I	Hours / Week	Continuous Assessment: 40 Marks	Total: 03 Credits	
		Term Work/ Oral: Marks		
Course Pre	-requisites:			
The Student	s should have			
1.	Knowledge of	f basic concept of Industrial Engineering	&Management	
2.	Knowledge of	Knowledge of statistics.		
3.	Basic knowledge of resources of production Man, Machine Material.			
Course Obj	jectives:			
1.	The student should understand the scope, objective and application of Production Planning And Control manufacturing Industries.			
Course Out		0		
Students wi	ll be able to unde	erstand		
1.	The important	The importance of PPC in industry.		
2.	The Forecasting by using different techniques.			
3.	Different ideas and concept to improve PPC in industry.			
4.	Different techniques for material requirement planning			
5.	Different techniques used for PPC in industry.			
6.	Computer Aided Process Planning.			

Course Contents			
UNIT I	Introduction to PPC :	(06 Hrs)	
	Role and stages of PPC, PPC as an integrated function, Product Life Cycle Analysis, Types of Production systems.		

UNIT II	Forecasting Techniques:	(06 Hrs)
	Use and types of forecasting, Methods of forecasting and comparison,	
	Verification and control.(Numerical Treatment)	
UNIT - III	Techniques And Production Control:	
	Process sheet, Routing, Scheduling- Gantt Chart, Machine Loading Chart,	
	Line of Balance, Line Balancing, Dispatching rules, Sequencing - Johnson's	
	rule, Loading, Follow- up, Evaluation, PERT, CPM(Numerical Treatment)	
		(06 Hrs)
UNIT - IV	Materials Planning And Purchasing:	
	Scope and requirement of MRP, MRP I and MRP II, Master Production	
	Schedule, Bill of Materials, Capacity Requirement Planning, Introduction to ERP, Purchasing - Documentation, Make or Buy decisions, Vendor	
	Development.	
		(06 Hrs)
		(00 1115)
UNIT - V	a) Inventory Control: Types of Inventory Cost of Inventory, EOQ, Selective Inventory Control, Replenishment Systems.	
	b) Stores Management: Types of stores, Storage layout and storage	
	systems, Stores Documentations, Stores Control and Control of Wastage and surplus, JIT, KANBAN, KAIZEN, Value Stream Mapping	
UNIT - VI	Computer aided production planning and control applied to :	(06 Hrs)
	a) Machine capacity planning and utilization. b) Productivity measurement.	
	c) Material Requirement Planning.	
	d) Scheduling Techniques. Hands on experience of Computer aided	
	Production Planning and Control. Case studies from Industries.	
Assignments	S:	
1.	Introduction of PPC	
2.	Techniques of Forecasting used in PPC	
3.	Different Techniques used in PPC to improve the production and to reduce the	
	cost of production	
4.	Use and application applications of material planning and purchasing	
5.	Use of inventory control	
5.		

6.	Computer aided production planning and control (CAPP)		
Text Books/	Reference Books	:	
1.	J.L. Riggs, "Production Systems - Planning Analysis and Control ", JhonWiley & Sons.		
2.	J.B. Dilworth, "Operations Management - Design, Planning & Control for Manufacturing and Services ", McGraw Hill.		
3.	S N Charry, "Proc	luction and Operation Management" Tata McGraw- Hill	
4.	Samuel Elion, Elements of PPC ", Universal Book Company.		
5.	Martand Telsang, "Industrial Engineering and Production Management" S. Chand and Co. Ltd.		
6.	Moore, "Production Control ".		
7.	Mager and Boodman," Production Planning And Inventory Control"		
8.	Martin Star, "Production Management ".		
9.	Erry Johnson, "Process Engineering ".		
10.	E. EL. Buffa, "Production Management ".		
11	A.K. Bewoor and V.A. Kulkarni "Production planning and Control"		
Syllabus for Unit Test:			
Unit Test -1		Unit I to III	
Unit Test -2		Unit IV to VI	

Elective II: 5.5 Experimental Methods in Mechanical Engineering				
TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTEI				
Theory:-03 Hours / Week	End Semester Examination: 60 Marks	TH: 03 Credits		
Practical: Hours / Week	Continuous Assessment: 40 Marks	PR: Credits		
	Term Work/ Oral: Marks	Total: 03 Credits		

Course Prerequisite:-	Student should have knowledge of:		
	1. Basic concepts in core courses in Mechanical Engineering.		
	2. Basic concepts in Engineering Mathematics.		
	3. Mechanical Measurements.		
Course Objective:-	The student must be able to:		
	1. Understand the concepts of probability and statistics.		
	2. Understand application of curve fitting techniques in engineering.		
	3. Understand methods of design of experiments.		
	4. Understand need of uncertainty analysis		
	5. Understand advanced measurement techniques.		
	6. Select a data acquisition system for a given application.		
Course Outcomes:-	Learner will be able to-		
	1. Understand characteristics of measurement system		
	2. Apply various techniques of curve fitting.		
	3. Apply basic concepts of design of experiments.		
	4. Use techniques of uncertainty analysis.		
	5. Use advanced measurement techniques in experimentation		
	6. Use data acquisition system (DAS) in experimentation.		
Course Contents			

Course Contents

(06 Hrs.)

Unit 1 Introduction to Experimental methods Probability and Statistics: Statistical Measurement Theory, Mean Value and Uncertainty, Probability-Density Function, Histogram-Frequency distribution, Mean value and Variance, Infinite Statistics, Normal-Gaussian distribution, Normal-Gaussian distribution,

Characteristics of measurement systems: Dynamic characteristics of first order (liquid in glass thermometer) and second order instruments (U tube manometer). Response of first order and second order systems.

Unit 2 Curve Fitting

(06 Hrs.)

Engineering application of curve fitting. Least squares approach, Polynomial curve fitting, Overfit and underfit. Multivariable regression analysis. Correlation coefficient. Power law and exponential curve fitting. Numericals based on practical engineering problems.

Planning of experiments, various stages in experimental investigations; preliminary, intermediate and final, steady state and transient techniques, Need for design of experiments (DOE). Guidelines for performing DOE. Factorial design: Full factorial design and Fractional factorial design. 2^K

Unit 4 Uncertainty in Measurements

factorial design. Taguchi method. Response surface methodology.

Unit 3 | **Planning of Experiments**

Errors in instruments, Analysis of experimental data and determination of overall uncertainties in experimental investigation, uncertainties in measurement of parameters like pressure, temperature, flow etc. under various conditions. Estimation of uncertainty by Partial Differentiation Method (PDM), Combining uncertainty components. Student's t-test method.

Unit 5 Advanced Measurement Techniques

Shadowgraph, Schlieren, Interferometer, Laser Doppler Anemometer, Telemetry in measurement, Orsat apparatus, Gas Analyzers, Smoke meters, gas chromatography, spectrometry, FFT analyzer.

Unit 6 Data Acquisition System (DAS)

Data Acquisition Systems: Basic and automated versions of DAS. Characteristics of DAS: analogous input, sample speed, accuracy, linearity and resolution. A/D and D/A converters, Signal conditioning equipments. Case studies on selection of DAS for different experimentations. Introduction to data acquisition softwares.

Reference Books

- 1. Coleman H. W. and Steele W. G., Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed.: John Wiley & Sons Inc., New Jersey, 2009.
- 2. Grewal, B. S. Higher engineering mathematics. Khanna Publisher, New Delhi, 1996.
- 3. Montgomery, Douglas C. Design and analysis of experiments. Vol. 6. New York: Wiley, 2002.
- 4. Kumar D. S., Mechanical Measurement & Control, Metropolitan Book Co. Pvt. Ltd. New Delhi, 2007.
- 5. Beckwith T. G., Marangoni R. D., Lienhard J. H., Mechanical Engineering Measurements, Pearson Prentice Hall, 2007

Assignments-

- 1. Problems on uncertainty analysis
- 2. Theory questions on introduction to experimental methods
- 3. Problems on practical engineering based on curve fitting
- 4. Theory questions on curve fitting
- 5. Theory questions on design of experiments
- 6. Practical engineering problems based on design of experiments
- 7. Questions based on transducers, sensors and actuators

(06 Hrs.)

(06 Hrs.)

(06 Hrs.)

(06 Hrs.)

- 8. Questions based on static and dynamic characteristics of instruments9. Questions based on data acquisition system10. Two practical oriented problems using any coding language.

Unit Tests-

Unit Test-I	Unit-I, II and III
Unit Test-II	Unit-IV,V and VI

6. INPLANT TRAINING			
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: Hrs. / Week	End Semester Examination: Marks	TH: Credits	
Practical: Hrs. / Week	Continuous Assessment: Marks	TW/OR: 04 Credits	
	Term Work/ Oral: 50 Marks	Total: 04 Credits	

Course	Students should have basic idea about engineering fundamentals		
Prerequisites:-			
Course	1. Able to understand company organization and products manufactured.		
Objective: -	2. Able to understand economic considerations for a specific product		
	3. Able to understand safe working environment in the company.		
	Able to communicate with workers and supervisors.		
	. Able to understand various aspects of industrial practices and ethics.		
	Able to understand exposure for real life work and internships, carrier options		
	with different work environments.		
Course	1. Factory layout and workflow		
Outcomes: -	nes: - 2. List of in-house manufactured and bought out parts and the economic		
	considerations for a specific product.		
	3. Component wise product manufacturing process chart.		
	4. Your training learning, deficiencies and lapses and suggestions for improvements		

In plant training for 45 days:

Before the VII semester, students are required go through in-plant training for 45 days in a manufacturing company. The students will show their interest of training to the faculty coordinator who will arrange their training. In case a student wishes to undergo training in a specific company, he will indicate the same to the training coordinator who after ensuring the suitability of the company will take suitable action. During the training period student will be required to strictly follow the company rules and regulations about timings and other matters will work on the assigned project. During training period the students are required to go the company daily. Their attendance record verified by the factory training in charge of the factory will be part of their project report.

Report:

On completion of training, students are required to write a technical report about their training. In general the report should not exceed 50 pages of typed material. The report should cover following: Introduction-organization, its short history, products manufactured, competitors and organization's position in the market and its growth potential, production planning & control, material management, delivery of orders, off loading of work to third party cost saving or energy saving proposals, qualitative feedback from expert, study of tool room.

		7. PROJECT STAGE -I		
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 00 Hrs. / Week		End Semester Examination: Marks	TH: Credits	
Practical: 02 Hrs. / Week		Continuous Assessment: Marks	TW/OR: 04 Credits	
		Term Work/ Oral: 100 Marks	Total: 04 Credits	
Course Pre	-requisites:			
	s should have			
1.	Knowledge of Mathematics & Science			
2.	Knowledge of basic concepts in heat transfer.			
3	Basic information of thermodynamics.			
4	Basic knowledge of design			
5	Knowledge of basic concepts in mechanical engineering.			
Course Obj	-		0	
1.	To identify problem for a specific need of an organization			
2.	To review literature on specific research topic			
3.	To make feasible, sustainable design			
4.	To work sincerely as a member of a team			
5.	.To communicate ideas to supervisors as well as subordinates			
6.	To develop new equipment or make modifications in existing one			
		Course Contents		
1	The formation of a project team with members having similar interest.			
2	Discuss the ideas within the team members and choosing a faculty member interested in similar activity with the consent of the HOD. The projects can be on new equipment development, on industry sponsored problems or on research oriented subjects.			
3	Discuss the pro	Discuss the project with the Faculty with the idea that projects selected are suitable		
	for design and fabrication with the available resources.			
4	 First presentation must include following points: Project Aim Feasible design and alternatives considered Estimation of approximate cost of the project Activities bar chart Internal Lab resources required External resources required and their availability. 			
5	 External resources required and their availability. Second presentation consists of: Collection of reference material and Design of the equipment with working drawings 			

Stage of work completed through activities bar chart.		
6	Third presentation includes complete work with suggested modifications.	

	8. Power Plant Engineerin	ıg
Teaching Scheme:	Examination Scheme:	Credits Allotted
Theory:-04 Hrs. / Week	End Semester Examination: 60 Marks	TH: 04 Credits
Practical:- 02 Hrs. / Week	Continuous Assessment: 40 Marks	PR: 01 Credit
	Term Work/ Oral: 50 Marks	Total : 05 Credits

Course Dronoguigitor	Student should have knowledge of
Course Frerequisite:-	Student should have knowledge of:
	1. Basic concepts in Fluid Mechanics, Engineering Thermodynamics
	and Turbo-machinery.
	2. Basic concepts in Engineering Mathematics.
Course Objective:-	The student must be able to:
	1. Understand present status of power generation in India.
	2. Understand various aspects of steam power plant.
	3. Understand details of steam condensers, cooling towers and noozels.
	4. Understand details of renewable and hybrid power systems.
	5. Perform analysis of power plant for specific application
	6. Understand various energy storage techniques.
Course Outcomes:-	Learner will be able to understand-
	1. Brief overview of different types of power plants
	2. Details of non-renewable power systems.
	3. Performance of condensers, cooling towers and nozzles.
	4. Performance of renewable and hybrid power systems.
	5. Economics of power generation.
	6. Procedures for safe operation and maintenance of power plants.

Course Contents

Unit 1	Introduction to Power Engineering	(08 Hrs.)
Differen	t types of power plants-Thermal, Hydro, IC Engine, Gas Turbine	, Nuclear and their
characte	ristics, Combined Cycle, Pumped storage,	
Compres	sed air storage power plants and their characteristics. Comparison of	of Power plants with
respect t	o various parameters.	
Issues in	Power plants. Resources and development of power in India, NTPC, N	HPC and their role in
Power d	evelopment in India.	
Power g	eneration in Private sector, Power distribution, National Grid, Indian E	Electricity Grid Code.
Regulati	on Structure of IEGC, Operating Policies and Procedures, Present Power	position in India.

Unit 2 Non-Renewable Power Systems	(08 Hrs.)
High pressure and Super Critical Boilers – Fluidised bed boilers.	
Steam power cycles- Rankin cycle with reheat, regeneration. Numerical based of	n different combinations
Performance of boilers.	
Fuel and ash handling, Combustion equipment for burning coal, Mechan	ical Stokers. Pulveriser
Electrostatic Precipitator, Draught- Different types	
Gas Turbine Power Plants: Fuels, Gas turbine material, open and closed cycles	, reheating, Regeneration
and intercooling, combined cycle. Turbojet, Ramjet, Turboprop, Rocket engine.	
Diesel Power Plants: Types of diesel plants, components, Selection of Engine type	**
Nuclear Power Plants: Nuclear reactors-PWR, BWR, CANDU, Sodium	• •
homogeneous; gas cooled. Advantages and limitations, nuclear power station, wa	ste disposal.
Unit 3 Condensers, Cooling Towers and Steam Nozzles	(08 Hrs.)
Steam Condensers: Function of condenser in thermal power plant, Class	
Jet, Surface and Evaporative. Air leakage in condenser: sources and	
vacuum, Estimation of quantity of cooling water, Dalton's law of part	tial pressure, Vacuum
efficiency, Condenser efficiency.	
Cooling Towers: Cooling water system, types of cooling towers. Performa	nce assessment of
Cooling Towers : Cooling water system, types of cooling towers. Performation cooling towers, Energy saving opportunities.	nce assessment of
cooling towers, Energy saving opportunities.	locity of steam leaving
cooling towers, Energy saving opportunities. Steam nozzles : General forms of nozzles, Flow through steam nozzles, Ve	locity of steam leaving nd exit for maximum
cooling towers, Energy saving opportunities. Steam nozzles : General forms of nozzles, Flow through steam nozzles, Ve nozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a	locity of steam leaving nd exit for maximum
cooling towers, Energy saving opportunities. Steam nozzles : General forms of nozzles, Flow through steam nozzles, Ve nozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a	locity of steam leaving nd exit for maximum
cooling towers, Energy saving opportunities. Steam nozzles : General forms of nozzles, Flow through steam nozzles, Ve nozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.)
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – IS
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – Is hotovoltaic and fuel cells
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – Is hotovoltaic and fuel cells ion systems and thei
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – Is hotovoltaic and fuel cells ion systems and thei
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse classification, construction and working of typical wind mill, Design c mills, present status. 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – Is hotovoltaic and fuel cells sion systems and thei onsiderations for wind
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse classification, construction and working of typical wind mill, Design commills, present status. Biomass power: Energy plantation, Combustion and fermentation, Anaer 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – Is hotovoltaic and fuel cells ion systems and thei onsiderations for wind robic digester, Biomas
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse classification, construction and working of typical wind mill, Design commils, present status. Biomass power: Energy plantation, Combustion and fermentation, Anaergasification, Pyrolysis, various applications of Biomass energy, Bio-fuel - 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – IS hotovoltaic and fuel cells ion systems and thei onsiderations for wind robic digester, Biomas
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse classification, construction and working of typical wind mill, Design c mills, present status. Biomass power: Energy plantation, Combustion and fermentation, Anaergasification, Pyrolysis, various applications of Biomass energy, Bio-fuel - applications. 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – Is hotovoltaic and fuel cells ion systems and thei onsiderations for wind robic digester, Biomas - Relevance, types, and
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a result of the steam of the st	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – IS hotovoltaic and fuel cells ion systems and thei onsiderations for wind robic digester, Biomas - Relevance, types, and f hybrid systems, Case
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse classification, construction and working of typical wind mill, Design comills, present status. Biomass power: Energy plantation, Combustion and fermentation, Anaer gasification, Pyrolysis, various applications of Biomass energy, Bio-fuel - applications. Hybrid Power Systems: Need for Hybrid systems, Range and type of studies of Diesel-PV, Wind-PV, Micro-hydel-PV, Biomass-Diesel systemication. 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – IS hotovoltaic and fuel cells ion systems and thei onsiderations for wind robic digester, Biomass - Relevance, types, and f hybrid systems, Case
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a result of the steam of the st	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – IS hotovoltaic and fuel cells ion systems and thei onsiderations for wind robic digester, Biomass - Relevance, types, and f hybrid systems, Case
 cooling towers, Energy saving opportunities. Steam nozzles: General forms of nozzles, Flow through steam nozzles, Venozzle. Mass of steam discharged, Critical pressure ratio, Areas of throat a discharge, Length of nozzle. Efficiency of a nozzle. Effect of friction in a r Unit 4 Renewable and Hybrid Power Systems Solar Power System: Types of Solar Collectors, Collection efficiency, Testing code, Applications of solar energy. Solar Pond, Solar Energy storage and types. P Wind power: Power from wind, Site selection, Wind energy converse classification, construction and working of typical wind mill, Design comills, present status. Biomass power: Energy plantation, Combustion and fermentation, Anaer gasification, Pyrolysis, various applications of Biomass energy, Bio-fuel - applications. Hybrid Power Systems: Need for Hybrid systems, Range and type of studies of Diesel-PV, Wind-PV, Micro-hydel-PV, Biomass-Diesel systemication. 	locity of steam leaving nd exit for maximum lozzle. (08 Hrs.) g of Solar collectors – 18 hotovoltaic and fuel cells ion systems and their onsiderations for wind robic digester, Biomass - Relevance, types, and f hybrid systems, Case

Load Curves, Load duration curves, Performance and operational characteristics of power plants, Peak load, Intermediate load and Base load plants and their characteristics, Input output characteristics of power plants, Economic division of between Base load plant and peak load plants. Cost of energy generation, Tariff methods. Economics of load sharing, comparison of various power plants. Numericals based on the syllabus contents.

Energy Storage Technologies: Pumped Hydroelectric Storage, Compressed Air Energy Storage, Battery Technologies - Traditional and Advanced, Flow Batteries, Flywheels, Superconducting Magnetic Energy Storage, Super-capacitors/Ultra-capacitors, Energy Storage Technology Comparisons, Functional Comparison, Cost Comparison.

Plant Safety and Maintenance: Operation and Maintenance procedures of power plants, Operator training, Safety during selection of power plant equipment –safety in commissioning of thermal power plant equipments, hydrostatic and air leakage test, acid and alkali cleaning, safety in auxiliary plants. Cooling water system, Safety in maintenance of power plants.

Reference Books

- 1. Modern Power Station Practice, Vol.6, Instrumentation, Controls and Testing, Pergamon Press, Oxford, 1971.
- 2. John V Grimaldi and Rollin H Simonds, Safety Management
- 3. M. M. El Wakil, Power Plant Technology Mc Graw Hill. Int. Edition.
- 4. Domkundwar and Arora, Power Plant Engineering, Dhanpatrai and Sons.
- 5. Grainger John J, and Stevenson Jr. W.D. Power System Analysis, McGraw Hill 1994
- 6. L. K. Kirchmeyer, Economic Operation of Power Systems, John Wiley and Sons, 1993.
- 7. C. A. Gross, Power System Analysis, John Wiley and Sons, Inc. 1986.
- 8. John Weisman & L.E. Eckart, Modern Power Engineering, Prentice Hall, 1985
- 9. A course on Power Plant Engineering Ramlingam SCITECH Publication
- 10. S. P. Sukhatme, Solar Energy, Tata McGraw Hill, 3rdEdition 1996.
- 11. G. D. Rai, Non-Conventional Energy Sources, Khanna Publishers, 2011
- 12. P. K. Nag, Power plant Engineering, TMH, 3rd Edition 2002

Assignments-

- 1. Theory questions on different types of power plants.
- 2. Problems on performance of steam power plant based on Rankin cycle
- 3. Theory questions on components of steam power plant.
- 4. Theory questions on gas turbine, diesel and solar power systems.
- 5. Theory questions on wind, biomass and hybrid power systems.
- 6. Practical engineering problems based on analysis of power plants.
- 7. Questions based on various terms related to economics of power generation.

- 8. Questions based on energy storage technologies.
- 9. Case study on electricity terrify calculation both for industry as well as household purpose.
- 10. Questions based on plant safety and maintenance.

Term Work (Any EIGHT experiments from the list below)

- 1. Study of National & International Grid, Indian Electricity Grid Code
- 2. Study of combined cycle gas based and coal based Power plant.
- 3. To perform analysis of a thermal power plant.
- 4. To perform analysis of gas turbine/ diesel/ solar power system.
- 5. To perform analysis of wind/ biomass power system.
- 6. Study of Power plant Instrumentation.
- 7. Visit to a thermal power plant.
- 8. Study of Heat Exchangers used in Power Plant
- 9. To study different energy storage technologies.
- 10. To study different types of hybrid power plants.

Unit Tests-

Unit Test-I	Unit-I, II and III
Unit Test-II	Unit-IV, V and VI

	9. II	NDUSTRIAL PRODUCT DESIG	N
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory: 03	Hours / Week	End Semester Examination: 60 Marks	TH: 03 Credits
Practical: 2 I	Hours / Week	Continuous Assessment: 40 Marks	PR: 01 Credit
		Term Work/ Oral: 50 Marks	Total: 04 Credits
Course Pre-	requisites:		
	s should have kno	owledge of:	
1.	Machine Dra		
2.	Machine Des	-	
3.		re viz. CATIA/ ProE/ SolidWorks/ UniGra	aphics
Course Obj		-	•
-	uld be able to ur	derstand	
1.	Various aspe	cts of product design and development	
2.	-	eration and selection	
3.		l Ergonomic considerations in product de	sign
Course Out	comes:		
Students sho	uld be able to		
1.	Understand c	haracteristics of successful product devel	opment.
2.		lifferent product design methods	
3.	Estimate mar	nufacturing cost, assembly and support co	osts.
4.		he concept of prototyping	
5.		teps to establish the product specification	s & concept generation,
6.		ergonomic considerations in product desig	
	T	Course Contents	
UNIT - I		o Product Design and Development	(06 Hrs.)
	architecture: In	Identify customer needs and product pl nplication of architecture, establishing lesign issue. Overview of industrial de	the architecture, related
		of quality aspect of product design;	
UNIT - II	Product Desig	n Methods	(06 Hrs.)
	Creative and establishing fu performance sp generating alter	rational, clarifying objectives - the nctions- the function analysis method, pecification method, determining charact matives – morphological chart method, ev tive method, improving details – the value	objective tree method, setting requirements-the eristics-the QFD method, valuating alternatives – the

	design strategies.	
UNIT - III	Product Specifications and Concept Generation	(06 Hrs.)
	Product specification, steps to establish the target specification	ons, Concept
	generation, five step concept generation method, concept select	
	screening, concept testing, product architecture	
UNIT - IV	Industrial Design and Prototyping	(06 Hrs.)
	Its need, impact and quality, industrial design process and its manager	ment, legal
	issues in product design, design resources, economics and management	
	development projects.	
	Prototyping: Basics and principles of prototyping, Rapid prototyping	technologies,
	planning for prototypes.	
UNIT – V	Ergonomics and Industrial Safety	(06 Hrs.)
	Introduction-General approach to the man-machine relationship	
	design working position and posture. An approach to industrial design	
	of design structure for industrial design in engineering ap	-
		-
	manufacturing systems. Environmental Application of ergonomics in	-
	safety, health and environment control. Safety and ISO 14000 System	S.
UNIT - VI	Design for Manufacture	(06 Hrs.)
	Estimating manufacturing cost, reducing component, assembly and s	support costs
	design for assembly, design for disassembly, design for environment	nt, design for
	graphics and packaging, effective prototyping-principle and planning.	Product data
	management. Innovation and creativity in product design. Product c	costing, value
	engineering, aesthetic concepts.	
Assignment	s.	
1.	At least FIVE questions on market survey, concept generation and pro-	oduct
	architecture	
2.	At least FIVE questions on various product design methods	
3.	At least FIVE questions on various concepts related to design for man	ufacture
4.	At least FIVE questions on industrial design and prototyping	
5.	At least FIVE questions on product specifications	
6.	At least FIVE questions on ergonomic considerations in product desig	<u>g</u> n
7.	At least FIVE questions on safety considerations in product design	
8.	At least FIVE questions on concept generation	
/D 11/		
Term Worl	k: Use of different CAD software <i>viz</i> . CATIA/ ProE/ SolidWorks/ while doing following case studies:	UniGraphics
	while doing following case studies:	

1.	A case study on m	arket study to identify costumer needs
2.	A case study on us	se of morphological analysis
3.	A case study on Q	uality Function Development (QFD)
4.	A case study of or	ne aesthetic considerations in product design
5.	Failure Modes and	d Effects Analysis (FMEA) in product design
6.	A case study on D	esign for Manufacturing
7.	A case study on P	roduct Lifecycle Management (PLM)
8.	A case study of or	ne ergonomic considerations in product design
9.	A case study of or	ne industrial safety considerations in product design
Text Books/	Reference Books:	
1.	Product Design an	d Development: Karl T. Ulrich, Steven G. Eppinger; Irwin
1.	McGraw Hill	
2.	•	d Manufacture: A.C. Chitale and R.C. Gupta; PHI Chitale &
۷.	Gupta, "Product D	Development", Tata McGraw Hill
3.	New Product Dev	elopment: Tim Jones, Butterworth, Heinemann, Oxford, 1997.
4.	•	r Manufacture and Assembly: Geoffrey Boothroyd, Peter
	Dewhurst and Win	ě
5.	ĕ	Otto and Wood; Pearson education.
6.	Industrial Design	for Engineers: Mayall W.H, London, Hiffee books Ltd, 1988
7.	Introduction to erg	gonomics – R.C. Bridger, McGraw Hill Pub.
8.	Product Design –	Kevin Otto, Kristin Wood Pierson Education
Syllabus for	Unit Test:	
Unit Test -1		Unit I to III
Unit Test -2		Unit IV to VI

		10. OPTIMUM DESIGN	
TEACH	ING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory:	04 Hrs. / Week	End Semester Examination: 60 Marks	TH: 04 Credits
Practical	: -02 Hrs. / Week	Continuous Assessment: 40 Marks	PR: 01Credits
		Term Work/ Oral: 50 Marks	Total: 05 Credits
Course I	Pre-requisites:		
	-	pasic knowledge of	
1.	Student shoul	ld have knowledge of Fundamentals of En	igineering Mechanics
2.	Student shoul	d have knowledge of Machine Design and	Computer Aided Drafting
3.	Student should	d have knowledge of Machine Design –I &	& II
4	Student should	d have knowledge of Theory of Machine	
Course (Objectives:		
	To develop co	ompetency for system visualization and de	sign.
	To enable stud	dent to design pressure vessels and to use	IS code.
	To enable stud	dent, select materials and to design interna	ll engine components.
	To introduce s mechanical co	student to optimum design and use optimized optimized optimized by the state optimized optimiz	zation methods to design
	To enable stud	dent to design machine tool gearbox.	
	• • • •	ly the statistical considerations in design a in components	and analyze the defects and
Course (Outcomes:		
Students	will be able to und	lerstand	
1.	The student v system level d	vill understand the difference between cor lesign.	nponent level design and
2.	Ability to des tool gearboxe	ign various mechanical systems like pr es, etc.	essure vessels, machine
3.	Ability to lear	n optimum design principles and apply it	to mechanical components.

4.	Ability to handle system level projects from concept to product	
UNIT - I	 Design of Bevel Gear and Worm gears Introduction, classification of bevel gears, terms used in bevel gears, formative or equivalent number of teeth for bevel gears, forces acting on a bevel gear, strength of bevel gears worm and worm wheel: Introduction, terms used in worm gearing, forces acting on worm gears, strength of worm gear teeth, wear tooth load for worm gear, efficiency of worm gearing, thermal rating of worm gearing 	(06 Hours)
UNIT - II	Design of Machine Tool Gearbox Introduction to machine tool gear boxes, design and its applications, basic considerations in design of drives, determination of variable speed range, graphical representation of speed and structure diagram, ray diagram, selection of optimum ray diagram, deviation diagram, difference between numbers of teeth of successive gears in a change gear box.	(06 Hours)
UNIT - III	Statistical Considerations in Design. Frequency Distribution-Histogram and frequency polygon, normal distribution-units of central tendency and dispersion – standard deviation- population combinations – design for natural tolerances – design for assembly- statistical analysis of tolerances, mechanical reliability and factor of safety.	(06 Hours)
UNIT - IV	Pressure Vessels Introduction, Classification of Pressure Vessels, Stresses in a Thin Cylindrical Shell due to an Internal Pressure, Circumferential or Hoop Stress, Longitudinal Stress, Thin Spherical Shells Subjected to an Internal, Thick Cylindrical Shell Subjected to an Internal Pressure, Compound Cylindrical Shells, Stresses in Compound Cylindrical Shells, Cylinder Heads and Cover Plates, Autofrettage.	
UNIT - V	Optimum Design Objectives of optimum design, adequate and optimum design, Johnson's Method of optimum design, primary design equations,	(06 Hours)

	subsidiary design equations and limit equations, optimum design with normal specifications of simple machine elements- tension bar, transmission shaft and helical spring, Pressure vessel. Introduction to redundant specifications (Theoretical treatment).	
UNIT -	VI Product Design Processes and Design Economics Technological innovation, product and process cycles, designing to codes and standards, design for manufacture and assembly, importance of economic decision making, value engineering, legal and ethical issues in design. Introduction to Design of Experiment. Mathematics of time value of money, cost comparison, depreciation, profitability of investments, benefit-cost analysis	(06 Hours)
Term W	/ork/Practical's:	
Assignm	nents:	
The de CAD s	e design project esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions	and the
The de CAD s other s finish s design should pressu	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc.	and the surface wing. A ssembly ncluding
The de CAD s other s finish s design should pressur 2. Collect standards	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc.	and the surface wing. A ssembly ncluding
The de CAD s other s finish s design should pressur 2. Collect standards 3. Write	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc.	and the surface wing. A ssembly ncluding
The de CAD s other s finish s design should pressur 2. Collect standards 3. Write 4. Collect photos.	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in re vessel, multispeed gear box, etc. et information about gear manufacturer along with catalog and identify designation s. a brief note on Statistical Considerations in Design with reference to any case study.	and the surface wing. A ssembly ncluding
The de CAD s other s finish s design should pressur 2. Collect standards 3. Write 4. Collect photos. 5. Discus	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc. et information about gear manufacturer along with catalog and identify designation s. a brief note on Statistical Considerations in Design with reference to any case study. et detailed information about pressure vessels types, uses, advantages, disadvanta	and the surface wing. A ssembly ncluding
The de CAD s other s finish s design should pressur 2. Collect standards 3. Write 4. Collect photos. 5. Discus 6. Write	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc. et information about gear manufacturer along with catalog and identify designation s. a brief note on Statistical Considerations in Design with reference to any case study. et detailed information about pressure vessels types, uses, advantages, disadvanta ses different modern software tools used for design optimization.	and the surface wing. A ssembly ncluding
The de CAD s other s finish s design should pressur 2. Collect standards 3. Write 4. Collect photos. 5. Discus 6. Write	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc. a brief note on Statistical Considerations in Design with reference to any case study. a brief note on Statistical Considerations in Design with reference to any case study. a detailed information about pressure vessels types, uses, advantages, disadvanta assignment on Digital Manufacturing.	and the surface wing. A ssembly icluding
The de CAD s other s finish s design should pressur 2. Collect standards 3. Write 4. Collect photos. 5. Discus 6. Write	esign project shall consist of two imperial size sheets (Preferably drawn with oftware)-one involving assembly drawing with a part list and overall dimensions heet involving drawings of individual components, manufacturing tolerances, symbols and geometric tolerances must be specified so as to make it working dra report giving all necessary calculations of the design of components and as be submitted. Projects shall be in the form of design of mechanical systems in reversel, multispeed gear box, etc. to information about gear manufacturer along with catalog and identify designation s. a brief note on Statistical Considerations in Design with reference to any case study. tt detailed information about pressure vessels types, uses, advantages, disadvanta ses different modern software tools used for design optimization. assignment on Digital Manufacturing. boks /Reference Books:	and the surface wing. A ssembly icluding

4	Johnson R. C., -	–Mechanical Design Synthesis with Optimization Applications, Von		
	Nostr and Reyno	old Pub		
5	S. K. Basu and I	S. K. Basu and D. K. Pal,—Design of Machine Tools Oxford and IBH Pub Co.		
6	Rudenko, Mater	ial Handling Equipment, M. I. R. publishers, Moscow		
7	P. Kannaiah, IDe	esign of Transmission systems, SCIETCH Publications Pvt. Ltd		
8	Pandy, N.C.and	Shah, C. S.,—Elements of Machine Design—, Charotar Publishing		
	House.			
9	Singiresu S. Rad	Singiresu S. Rao, Engineering Optimization: Theory and Practice, John Wiley & Sons.		
10	M. V. Joshi, Pro	ocess Equipment Design, Mc-Millan.		
11	Design Data—,I	P.S.G.College of Technology, Coimbatore		
12	LS 2825 Code	for unfired pressure vessels		
12	1.5. 2025. Code	for annea pressure vessels		
Syllabu	s for Unit Test:			
Unit Tes	st -1	Unit I to III		
Unit Tes	st -2	Unit IV to VI		

TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTE	D :
Theory: 0	3 Hours / Week	End Semester Examination: 60 Marks	TH: 03 Cree	
Practical: - Hours / Week		Continuous Assessment: 40 Marks	PR: Crec	lits
		Term Work/ Oral: Marks	Total: 03 C	redits
Course Pr	e-requisites:			
	ts should have			
1.	Knowledge of N	Iathematics & Theory of Machines		
2.	Knowledge of A	utomatic Control Systems		
3.	Knowledge of S	ensors and Transducers		
Course Ol	ojectives:			
1.	To inculcate the basic concepts, parts of robots and types of robots			
2.	To make the student familiar with the various drive systems for robot, sensors and their applications in robots and programming languages of robots			
3.	To create manpo	ower for working on robot		
Course O	itcomes:			
After the s	uccessful complet	ion of this course, the student will be able,		
1.	To identify poter	ntial areas for automation and justify need	for automatio	n.
2.	To do line balan	cing of an automation system.		
3.	To explain the b programming of	asic principles of robotic technology, conf robots.	igurations, con	ntrol and
4.	To select suitabl	e sensor & design robotic gripper for diffe	erent application	ons.
5.	To analyze robots through kinematic and dynamic study.			
6.	To explain the b robot application	asic principles of robot programming lang ns.	uage and Iden	tify typical
	1	Course Contents		
UNIT I	Introduction to	Industrial Automation		(06 Hrs.)

	Automation and Robotics, Historical Development, Basic concept of automation, Building Blocks of Automation Systems- Sensors, Analyzers, Actuators, Drives. Types of automation: fixed, flexible and programmable and their comparative study. Concept of Mechanization of Parts Handling.	
UNIT II	High Volume Manufacturing System	(06 Hrs.)
	Transfer Lines, Detroit type automation-Design and fabrication considerations. Analysis of automated flow lines- technology, analysis of transfer lines without storage, partial automation and automated flow lines with storage buffers, computer simulation of automated flow lines. Assembly system and line balancing- computerized line balancing methods.	
UNIT III	Fundamentals of Robot Technology	(06 Hrs.)
	Fundamentals of Robotics: Robot Definitions, Laws of Robotics, Basic Structure of Robots, links and Joints, types of Joints, types of links, types of end effectors, Wrist configuration: concept of: yaw, pitch and roll. Robot Anatomy, work volume, work envelope, robot manipulator. Specifications of robot: degrees of freedom (DOF), accuracy, repeatability, spatial resolution, compliance, loads carrying capacity, speed of response.	
	Classification of Robots - 1) Co-ordinate system: Cartesian, cylindrical, spherical, SCARA, articulated 2) Control Method: Servo controlled and non-servo controlled, their comparative study 3) Form of motion: P-T-P (point to point), C-P (continuous path), pick and place etc. and their comparative study 4) Drive Technology: Hydraulic, Pneumatic, Electric (stepper motor, D.C. servo motor) in detail with selection criteria. Motion conversion: Rotary to rotary, rotary to linear and vice versa.	
UNIT IV	Sensors and End-Effectors in Robotics	(06 Hrs.)
	Sensors and Transducers in Robotics: Uses of Sensors in Robotics, type of sensors in robot systems, non-optical and optical position sensors, Touch Sensors-Tactile sensor, Pressure sensors, colour sensor, gas sensor and flexible force sensor, Torque sensors, Light sensors, Voice Communication.	

	End-Effectors in Robotics : Classification of End Effectors, Drive system for end effectors, Mechanical Grippers, Magnetic Grippers, Vacuum Grippers, adhesive Grippers, Hooks, Scoops, Tools as end effectors. Gripper force analysis and gripper design- Simple problems, Active and Passive Grippers.		
UNIT V	Robot Kinematics and Dynamics	(06 Hrs.)	
	Introduction to manipulator kinematics, position representation, forward and reverse transformation of two degree of freedom robot arm, four degree of freedom manipulator in three dimensions. Robot Dynamics, D Alembert's Equations of Motion.		
UNIT VI	Robot Programming Languages and Industrial Applications	(06 Hrs.)	
	 Robot Programming Languages: Concept of on-line and off line programming, concept of teach pendant. Methods of robot programming- Lead through methods, Textual robot languages and their Features. Applications of Robots: Robot applications based on survillance system, machining, material handling, house hold and service sector. Applications of Telechiric robots. 		
Assignme	nts:		
1.	At least five theory questions based on identifying the industrial applicat robotics & automation.	ions of	
2.	At least five theory questions on identifying the industrial applications of with building blocks.	fautomation	
3.	At least five theory questions on identifying the fixed, flexible and prograutomation.	ammable	
4.	At least five theory questions on high volume manufacturing system.		
5.	At least five theory questions on study of line balancing of an automation	n system.	
6.	At least five PLC programs based on pick and place robot.		
7.	At least five theory questions based on fundamentals of robotics.		
8.	At least five theory questions based on selection of sensors.		
9.	At least five theory /numerical questions based on selection of end effect	ors of robot	

10.	At least five theo	ry /numerical questions based on robot kinematics and dynamics.	
11.	At least five theory questions based on robot programming language and robot applications.		
12.	At least five theo	ry questions on identifying the industrial applications of robots.	
Text Book	s/Reference Book	s:	
1.	"Industrial Robot	tics", Groover, Weiss, Nagel, McGraw Hill International	
2.		duction Systems and Computer Integrated Manufacturing arson Education.5th edition, 2009	
3.	Introduction to R 2010	obotics- John J. Craig, Addison Wesley Publishing, 3rd edition,	
4.	Robotics Techno Education (India)	logy and Flexible Automation, Second Edition, 2010 McGraw Hill) Private Limited	
5.		an, Robotics and Image Processing an Introduction, Tata McGraw ompany Ltd., 1995.	
6.	Stuart A Boyer: Society of Autom	SCADA supervisory control and data acquisition, International nation, 2010.	
7.	A Robot Engineering Textbook "– Mohsen Shahinpoor – Harper & Row publishers, New York		
8.	"Anatomy of Automation"- Amber G.H & P. S. Amber, Prentice Hall. Principles of CIM by Vajpayee, PHI.		
9.		J. Nagrath, "Robotics and Control", Tata McGraw Hill Publishing	
10.	·	g, "Fundamentals of Robotics: Analysis and Control", Prentice	
11.	Arthur J. Critchlo 1985	ow, "Introduction to Robotics", Macmillan Publishers Limited,	
12.	Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey, "Industrial Robotics: Technology, Programming and Applications", McGraw Hill Book Company		
Syllabus f	or Unit Test:		
Unit Test -	1	Unit I to III	
Unit Test -2		Unit IV to VI	

	F	Clective III: 11.2 CRYOGENICS		
TEACHING	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 03	Hours / Week	End Semester Examination: 60 Marks	TH: 03 Credits	
Practical: - H	Iours / Week	Continuous Assessment: 40 Marks	Total: 03 Credi	ts
		Term Work/ Oral: Marks		
Course Pre-	requisites:			
	s should have			
1.	Knowledge of h	neat transfer.		
2.	-	efrigeration and air conditioning.		
Course Obj		6		
1.		overning Equations of vicious fluid flows		
2.	To introduce numerical modeling and its role in the field of fluid flow and heat transfer			d heat
3.	To enable the st	udents to understand the various discretize	ation methods	
Course Out	comes:			
Students wil	l be able to under	rstand		
1.	Student should able to understand cryogenic systems			
2.	Student should able to understand Behavior of materials at low temperature			
3.	Student should	able to understand Gas Liquification Syst	ems	
4.	Student should	able to understand Gas Separation And P	urification Syste	ems
5.		able to understand Measurement System nd Transfer Systems	s For Low Tem	peratures,
6.		able to understand Application Of Cryoge	enic Systems	
		Course Contents	<u>y</u>	
UNIT - I	Introduction to	Cryogenic and properties of materials	5	(06 Hrs.)
	History and dev Low temperat	relopment it's importance, cryogenic temp are properties of materials, Mechanic rties, electric and magnetic properties,	perature scale. cal properties	
UNIT - II	Gas Liquificat			(06 Hrs.)
	Introduction- pr	roduction of low temperature , Liquefaction of low temperature , Liquefaction cogen, He etc.(Numerical Treatment)	on systems for	
UNIT - III	Cryocoolers Regenerative sy	vstems – Overview of regenerative cooler	s, Introduction	(06 Hrs.)
		Coolers, Stirling Coolers, G-M Coolers		

UNIT - IV	Gas Separation	n And Purification Systems	(06 Hrs.)		
	Thermodynamic	cally ideal separation systems- properties of mixtures,			
	principles of g	as separation Rectification column- Linde single and			
	double column	system of air separation.			
UNIT - V	Fluid Storage A	And Transfer Systems	(06 Hrs.)		
	Dewar vessel, in	nsulation types and importance. Components of transfer			
	system with imp	portance. Importance of vacuum and it's measurement.			
UNIT - VI	Application Of	² Cryogenic Systems	(06 Hrs.)		
	Applications in	mechanical, electrical, food preservation, biological			
	and medical, sp	ace technology etc.			
Assignment	s:				
Assignments	s will be based on	above syllabus			
1.	History and dev	elopment it's importance, cryogenic temperature scale.			
2.	Low temperatur	e properties of materials, Mechanical properties Thermal			
	properties, elect	ric and magnetic properties			
3.	Introduction- pro	duction of low temperature, Liquefaction systems for N2	2		
4.	Liquefaction sys	stems for Neon, Hydrogen, He			
5.	Regenerative sy	stems - Overview of regenerative coolers, Introduction to Pulse			
	Tube.				
6.	Stirling Coolers	, G-M Coolers, J-T Coolers, Cryocooler applications.	G-M Coolers, J-T Coolers, Cryocooler applications.		
7.	Thermodynamic	cally ideal separation systems- properties of mixtures, pr	rinciples of		
	gas separation R	ectification column- Linde single			
8.	Dewar vessel, ir	sulation types and importance.			
9.	Components of	transfer system with importance. Importance of vacuu	m and it's		
	measurement				
10.	Applications in r	nechanical, electrical, food preservation, biological.			
Text Books/	Reference Book	s:			
1.	Cryogenics syst	ems – Randall Barron – Mc Graw Hill Book Co			
2.	Cryogenic Engi	neering – R. B. Scott – Van Nosfrand Co.			
3.	Cryogenic Engi	neering –J. H. Bell – Prentice Hall			
4.	Cryogenic Engi	neering – R. W. Vance – John Welley			
5.	Cryocoolers - W	Valkers – Prentice Hill Publication			
Syllabus for	· Unit Test:				
Unit Test -1		Unit I to III			
Unit Test -2		Unit IV to VI			

	Elective III: 1	1.3 PROJECT MANAGEMENT	& ETHICS	5
TEACHING SCHEME:		IEME: EXAMINATION SCHEME:		DITS TTED:
Theory: 03	Hours / Week	End Semester Examination: 60 Marks	TH: 03 Crea	lits
		Continuous Assessment: 40 Marks		
		Term Work/ Oral: Marks	Total: 03 C	redits
Course Pre	-requisites:			
The Student	s should have			
1.	Basic knowledg	ge of general management.		
2.	Basic knowledg	ge of statistics		
3.	Basic knowledg	ge of industrial management		
Course Ob	jectives:			
		f the course is to create awareness of the c d its components to students	oncept of pro	oject
Course Out	tcomes:			
Students wi	ll be able to under	rstand		
1.	Project manage	ment and its importance.		
2.	Various technic	ues used to analyze a project.		
3.	Methods for cos	st estimation of a project.		
4.	Methods for pla	anning and scheduling of a project.		
5.	Methods for mo	onitoring and control of projects.		
6.	Project manage	ment and business ethics.		
UNIT - I	Introduction to	o Project Management		(06 Hours)
	Project, Projec Management A	t Management, Management by project ssociations, Benefits of Project Managem ocess, Role of Project Manager. Project L	ent, Project	

UNIT - II	Project Management Techniques and Risk Management	(06 Hours)	
	Feasibility Studies, Numerical Models (Payback Period, Return on Investment, Net Present Value, Internal rate of Return), Scoring Models, Break Even Analysis		
	Project Risk Management: Introduction, Risk, Risk Management, Role of Risk Management in Overall Project Management, Steps in Risk Management, Risk Identification, Risk Analysis, Reducing Risks.		
	Use of excel and MS project for feasibility studies and risk management.		
UNIT - III	Project Cost Estimating	(06 Hours)	
	Estimating terminology, Project Costs, Estimating Methods (Jobbing, Factoring, Inflation, Economies of Sales, Unit Rates, Day Work), Analogous Estimating, Parametric Estimating, Bottom-Up Estimating, Three-Point Estimates, Monte Carlo Simulation, Project Budgeting, Resource Allocation, Cost Forecasts Use of excel and MS project for project cost estimating		
UNIT - IV	Project Planning and Scheduling	(06 Hours)	
	Project Planning: Introduction, Need of Project Planning, Project Life Cycle, Roles, Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS)		
	Scheduling: Introduction, Development of Project Network, Time Estimation, Determination of the Critical Path, PERT Model, Measures of variability, CPM Model, Network Cost System		
	Use of MS project Project Planning and Scheduling		
UNIT - V	Project Monitoring and Control	(06 Hours)	
	Project Execution and Control: Introduction, Project Execution, Project Control Process, Purpose of Project Execution and Control		
	Project Management Information System: Introduction, Project Management Information System (PMIS), Planning of PMIS, Design of PMIS		
	Project Performance Measurement and Evaluation: Introduction, Performance Measurement, Productivity, Project Performance Evaluation, Benefits and Challenges of Performance Measurement		

	and Evaluation, Controlling the Projects			
UNIT - VI	Professional Responsibility (Ethics)	(06 Hours)		
	Ensuring Integrity and Professionalism, Project Management Knowledge Base, Enhancing Individual Competence, Balancing Stakeholder Interests, Interactions with Team Members and Stakeholders, Templates, Tools and Techniques			
Assignment	is:			
1.	At least five questions based on the introduction to project management	nt		
2.	Case study involving various aspects of project.			
3.	Case study involving various techniques used for project selection.			
4.	At least five Numericals on various techniques used for project selection	on.		
5.	Case study of project cost estimation			
6.	At least five Numericals on project cost estimation			
7.	Case study of project scheduling			
8.	At least five Numericals on project scheduling			
9.	Case study based on project scheduling			
10.	At least five questions based on project monitoring			
11.	At least five questions based on ethics			
12.	Industrial case study of project ethics			
Text Books	s/Reference Books:			
1	Project Management Institute; "A Guide to the Project Management Body Knowledge (PMBOK Guide)"; 5th Revised edition (1 January 2013)	v of		
2	Harold Kerzner; "Project Management: A Systems Approach to Planning, Sch Controlling Paperback"; Wiley; tenth edition (20 November 2012)	heduling and		
3	Erik Larson, Clifford Gray; "Project Management: The Managerial Process"; Education; Sixth edition (1 July 2014)	McGraw Hill		
4	Panneerselvam R; "Project Management"; Prentice Hall India Learning Private Limited; 1 Edition (2009)			

5	Samuel J. Mantel, Jack R. Meredith; "Project Management: A Managerial Approach"; Wiley; Eighth edition (6 August 2012)			
6		Gupta R; "Project Management"; Prentice Hall India Learning Private Limited; Second edition (2014)		
Syllabua far	Unit Toat.			
Syllabus for	Unit Test:			
Unit Test -1		Unit I to III		
Unit Test -2		Unit IV to VI		

	Elective II	I: 11.4. TOTAL QUALITY MAN	IAGEMENT	
TEAC	HING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLO	TTED:
Theory	: 03 Hrs/Week	End Semester Examination: 60 Marks	TH: 03 Credits	
		Continuous Assessment: 40 Marks	Total: 03 Credits	
		Term Work/ Oral: Marks		
Course	e Pre-requisites:			
The St	udents should have			
1.	Basics of Quality Co	ntrol		
2.	Basics of Measureme	ents and measuring Instruments		
3.	Knowledge of Statist	ics.		
Course	e Objectives:			
To und	lerstand the Total Qu	ality Management concept and principles	and the various tools	s available
to achi	eve Total Quality Ma	nagement and to understand the statistica	al approach for qualit	y control.
Course	e Outcomes:			
1.	Implement the prin	nciples of total quality management.		
2.	Apply six sigma c	oncepts and increase the quality of produ	ct.	
3.	Make use of TQM	techniques		
4.	They will be able to implement TQM Tools.			
5.	Execute Quality standards in companies			
6.	Make use of Ac	lvanced Techniques of Total Quality	Management like	Design of
	experiments, Failu	re mode effect analysis, Taguchi method	Taguchi's quality en	gineering
		Quality Management		(06 Hrs)
-		ality, New philosophy of quality, Pro	duct quality, & its	
prospe				
		pt & definition, Fundamentals, Principles	-	
of TQN TQM.	A,Approaches of TQ	M, Models of TQM, Zero defect concept,	Benefits of	
-	ner satisfaction - Cus	stomer Perception of Quality, Customer	Complaints Service	
		on, Employee Involvement - Motivati	-	
		ward, Performance Appraisal, Benefits,	on, Empowerment,	
i callis	, Keeoginuon and Ke	ware, i erformance Appraisai, benefits,		
UNIT-	II: Quality Assuran	ce		(06 Hrs)
Basic c	concepts, Quality ass	urance input – process – output. Significa	ance of feedback for	
		capability analysis, Concept of Six Sigma		
Interna	l customer approach,	Customer - Satisfaction, data collection	&	
	aint, Redressal mecha			
TINIT	Ш. ТОМ Т1-			
UNIT-	III: TQM Tools			(06 Hrs)

Continuous Process Improvement - Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier	
Partnership - Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship	
Development, Performance Measures - Basic Concepts, Strategy, Performance	
Measure, Just - in- Time, Quality Function Deployment (QFD) - House of Quality, QFD	
Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM)	
- Concept, Improvement Needs, FMEA - Stages of FMEA., FMEA, TPM.	
UNIT-IV: TOYOTA Production System and Lean Manufacturing	(06 Hrs)
History of TPS. History, Scope,	(00 HIS)
What is lean production? – Introduction, background, and lean thinking.	
Lean production preparation – System assessment, process and value-stream mapping –	
Sources of waste.	
Lean production processes, approaches and techniques. —Importance of focusing upon	
flow. Tools include: a. Workplace organization – 5S. b. Stability. c. Just-In-Time – One	
piece flow – Pull. d. Cellular systems. e. Quick change and set-up reduction methods. f.	
Total productive maintenance. g. Poka-Yoke – mistake proofing, quality improvement.	
h. Standards. i. Leveling. j. Visual management.	
Employee involvement – Teams – Training – Supporting and encouraging involvement	
- Involving people in the change process communication Importance of culture	
UNIT-V: Quality Systems	(06 Hrs)
Policy & objectives, Quality standards, Concept of quality system standards, Relevance	
Policy & objectives, Quality standards, Concept of quality system standards, Relevance & origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001,	
& origin of ISO 9000-2000 standard & certification, Benefits. Elements of ISO 9001,	
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design &	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system)	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work:	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system)	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work: Detail Study and Presentations on Above topics to be submitted.	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work: Detail Study and Presentations on Above topics to be submitted. Assignments 1. Assignment on TQM	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work: Detail Study and Presentations on Above topics to be submitted. Assignments 1. Assignment on TQM 2. Assignment on Six sigma concept.	(06 Hrs)
 & origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work: Detail Study and Presentations on Above topics to be submitted. Assignment on TQM Assignment on TQM principles. 	(06 Hrs)
& origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work: Detail Study and Presentations on Above topics to be submitted. Assignments 1. Assignment on TQM 2. Assignment on TQM 3. Assignment on TQM principles.	(06 Hrs)
 & origin of ISO 9000–2000 standard & certification, Benefits. Elements of ISO 9001, 9002, 9003 series–Clauses, contents, interpretations & implementation. TS - 16949, QS-9000, ISO 14000, OHSAS UNIT-VI: Advanced Techniques of Total Quality Management Design of experiments, Failure mode effect analysis, Taguchi methodTaguchi's quality engineering –Loss function, orthogonal arrays, Signal to noise ratio, parameter design & tolerance design.Total Quality in service sector.S. S. Technique, Kanban (Little's Law for KANBAN system) Term work: Detail Study and Presentations on Above topics to be submitted. Assignment on TQM Assignment on TQM principles. Assignment on TQM tools. 	(06 Hrs)

Text Books/ References

- 1. Sundar Raju, "Total Quality Management", Tata McGraw Hills.
- 2. M. Zairi, "Total Quality Management for Engineers", Aditya Books.
- 3. ISO 9000 Quality System", Dalela& Saurabh, Standard Publishers.
- 4. R.C. Gupta, "Statistical Quality Control".
- 5. Grant E. L. & R. Leavenworth, "Statistical Quality Control", Tata McGraw Hills
- 6. TapanBagchi, "Taguchi Methods Management", Pearson Education.
- 7. Feigenban, "Total Quality Control", Tata McGraw Hills.
- 8. Total Quality Management Handbook, J. K. Hradeskym, Tata McGraw Hills.

Unit Test

Unit Test 1	Units I, II and III
Unit Test 2	Units IV, V,VI

Teaching Scheme:	Examination Scheme:	Credits Allotted:
Theory: 03 Hours / Week	End Semester Examination: 60 Marks	TH: 03 Credits
	Continuous Assessment: 40 Marks	Total :03 Credits
	Term Work/ Oral: Marks	
	lents should have knowledge of Engineeri ts, Numerical Methods, Machine Design	-
 problem linear a Develop To disc To develop To extend like the To develop To develop 	elop the finite element formulation for a mean like axially loaded bar for the case of simpproximation). p the Shape Functions for Various Element cuss the possible refinements of the simple elop the frame work of a finite element co- ional problem. end the finite element formulation to other be beam problem. elop the two-dimensional finite element for n like 2-D steady-state heat conduction pr	mplest approximation (i.e. nts. est approximation. ode to solve the one- one-dimensional problem
Course Outcomes:		
Students will able toStudents will be ableStudents will be able	to understand Formulation of Finite Elem solve 1 D Problems. to solve 2 D Structural and Thermal Prob to analyze Mechanical Engineering real 1 to solve Mechanical Engineering Problem	lems. ife problems.

UNIT – I	Introduction
(6 Hrs.)	Basic Steps in FEM Formulation, Error Analysis P & h formulation; Stress
	Equilibrium equation; Strain displacement equation; Stress-Strain equation;
	Introduction to Solvers; Variational Approach, Ritz Method. Derivation of
	Elemental Equations, Assembly, Imposition of Boundary Conditions, Solution of
	the Equations. Computer implementation: Pre-processor, Processor, Post-processor.
UNIT – II	One Dimensional Problem
(6 Hrs.)	1 -D Elements, Relationship between Global and Natural coordinate system;
	Formulation of Element Stiffness Matrix and Load Vector by Potential Energy
	approach; Shape Functions using LAGRANGE Polyomials for Two noded Bar
	Element, Rectangular Element, hexahedron Brick Element; Convergence Criteria,
	Temperature effect.
UNIT – III	
(6 Hrs.)	Plain Stress, Plain Strain; Types of 2 D Element, Formulation of Element
	Stiffness matrix and Load Vector for Constant Strain Triangles, Formulation of
	Element Stiffness matrix and Load Vector for 2D Trusses; Introduction to Higher
	Order Elements.
UNIT – IV	
(6 Hrs.)	Stress calculation and Temperature effect on Flywheel using Galerkin Approach; Isoparametric Elements; Element Quality Criterion; Full and Reduced integration;
	Sub Modelling and Sub Structuring.
UNIT – V	
(6 Hrs.)	Governing Differential Equation; Steady State Heat transfer Formulation of 1 D
(*)	Element for Conduction and Convection; Boundary Conditions and Solving for
	Temperature Distribution; 1D Heat Transfer Steps involved in Processing Steps.
UNIT – VI	Dynamic Analysis:
(6 Hrs.)	Lumped mass and Consistent Mass Matrices; Free Vibration Problems,
	Formulation of Eigen Value and Eigen Vector Problem by Power Method, Step
	wise solution of Problems on Vibration in Bar Element; FEM Formulation. Time-
	dependent Problems.
Term Work	/Practicals:
1	. Structural Analysis of Corner Bracket, Truss Structure and Spring.
2	. Static and Dynamic Analysis of Cantilever Beam.
3	. Modal analysis of Simple Pendulum.
4	• Steady State Heat Transfer through a Plate with Hole.
5	. Analysis of Connecting Rod.

6. Analysis of Composite Leaf Spri	ng.
------------------------------------	-----

7. Analysis of Piston.

8. Analysis of Burnished Components.

9. Analysis of Knuckle Joint.

10. Analysis of Screw Jack.

Assignments:

- 1. Introduction to Finite Element method.
- 2. Derivations and Numerical on Variational Approach and Ritz Method.
- 3. Derivations and Numerical on Potential Energy Approach.
- 4. Determination of Shape Functions for Various Elements.
- 5. Derivations and Numerical on CST Elements.
- 6. Derivations and Numerical on Trusses.

7. Stress calculation and Temperature effect on Flywheel using Galerkin Approach.

8. Isoparametric Elements: Full and Reduced integration methods Numerical.

9. Derivation and Numerical on Steady State Heat transfer Formulation of 1 D Element for Conduction and Convection by Differential Equation.

10. Analysis of any one Mechanical Component subjected to Heat transfer.

- 11. Determination of Eigen value and Eigen vector for any Mechanical component.
- 12. Analysis of Time Dependent problem.

Text Books	s/Reference Books:
1	S. S. Rao, The Finite Element Methods in Engineering, Pergomon Press Oxford, 2nd edition, 1989
2	Sagarlind L. J, Applied Finite Element Analysis, John Wiley, 1984
3	Chandrupatla & Belegundu, Introduction to Finite Elements in Engineering, Prentice Hall, 1999
4	Reddy. J.N, An Introduction to Finite Element Methods, Tata McGraw Hill, 1997
5	Cook, Robert, Davis Etal, Concept & Applications of Finite Element Analysis, John Wiley & Sons, 1999

Syllabus for Unit Test:		
Unit Test -1	Unit I to III	
Unit Test -2	Unit IV to VI	

		12. PROJECT STAGE -II	1
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory: 00	Hours / Week	End Semester Examination: Marks	TH: Credits
Practical: - (04 Hours / Week	Continuous Assessment: Marks	TW/OR: 08 Credits
		Term Work/ Oral: 200 Marks	Total: 08 Credits
Course Pre	-requisites:		
The Student	s should have		
1	Knowledge of basic concepts in heat transfer.		
2	Basic information of thermodynamics		
3	Basic knowledge of fluid mechanics.		
4	Knowledge of basic concepts in mechanical engineering		
5	Basic knowledge of design		
Course Obj	jectives:		
1.	To fabricate the designed equipments		
2.	To conduct laboratory and field testing of the new equipment		
3.	To analyze performance of the equipment with different performance parameters		
4.	To make changes in design if necessary based on the performance analysis		
5.	To prepare project report and deliver presentation		
6.	To work sincerely as a member of team		
		Course Contents	

training, the students wish to change their project, the same may be allowed after discussion with the faculty. The new project should be based on the training taken and should utilize the training experience.

In Semester II concentration will be on

1. Hard ware fabrication

2. Testing of equipment

3. Preparing a project report

The work will be evaluated through three presentations with aim of watching the progress and suggesting modifications for completing the project.